
FREE RADICALS IN CYBERSPACE

COMPLEX LIABILITY ISSUES IN INFORMATION WARFARE

MEIRING de VILLIERS
John Landerer Faculty Fellow
University of New South Wales, School of Law
Sydney, NSW 2052
AUSTRALIA

mdv@unsw.edu.au

Abstract

During the weeks leading up to September 11, 2001, successive versions of a particularly
destructive and complex Internet worm, named W32/CodeRed, took information warfare
to a new level of complexity and danger. W32/CodeRed was the forerunner of a new
wave of malevolent software, known as a blended attack. A blended cyber attack exploits
security vulnerabilities in a target computer system in combination with computer viruses
carrying multiple destructive properties. The blended attack exploits synergies between
the virus and the security vulnerability to enhance the effectiveness and destructiveness
of the virus payload. Blended attacks present complex liability issues, including
apportionment of liability among the original tortfeasor (the creator of the security
vulnerability) and the second tortfeasor (the exploiter of the vulnerability.) The liability
of an original tortfeasor is usually cut off by an intervening crime or intentional tort. The
pattern of common law decisions suggests, however, that the liability of an original
tortfeasor will be preserved if he or she created an opportunity for free radicals. Free
radicals are individuals who are not deterred by the threat of liability. The analysis in the
article suggests that virus authors and distributors have properties commonly associated
with free radicals. The analysis informs, furthermore, that the factors that influence
courts in holding a defendant liable for encouraging free radicals are present in a typical
blended attack. We conclude that liability will be preserved against a primary tortfeasor
whose negligence was responsible for a vulnerability intentionally exploited by a free
radical cyber attacker. The primary tortfeasor is likely a solvent commercial entity, while
the attacker is often judgment-proof, or otherwise shielded from liability. The result is
therefore significant, especially for the victim of a blended attack seeking to recover
damages related to the attack.

Acknowledgements

Mark Grady
Peter Szor
Audience at Georgia Tech

Table of Contents

0. Abstract
1. Introduction
2. Malevolent Software
 2.1 Background
 2.2 Defenses against malevolent code
 2.3 Blended attacks
 2.4 The buffer overflow
3. Liability issues in blended attacks
 3.1 Negligence concepts
 3.2 Proximate causality
 3.3 The Encourage Free Radicals Doctrine
4. Free Radicals, the Buffer Overflow, and Blended Attacks
 4.1 Virus authors and distributors as free radicals
 • Anonymity of the Internet
 • Role of e-mail
 • Deterrability of cyber rogues
 4.2 EFR Factors
 • Encouragement must be negligent
 • Other EFR factors
5. Discussion and Conclusion

1. Introduction

During the weeks leading up to September 11, 2001, successive versions of a particularly
destructive and complex Internet worm, named W32/CodeRed, took information warfare
to a new level of complexity and danger. By exploiting a common network vulnerability,
the rapidly spreading CodeRed slowed down and compromised the security of the
Internet, and attempted to launch denial of service attacks on the official White House
Web page.1 The first version of the worm, which we shall refer to as CodeRed-I,

1 CodeRed infected over 300,000 machines within 24 hours. Peter Szor, THE ART OF COMPUTER VIRUS
RESEARCH AND DEFENSE (Symantec Press, 2005), at 98.

exploited a security vulnerability in Microsoft's Internet Information Services (IIS) web
servers.2

 Once CodeRed-I infected a machine, it checked whether the current date was
between the first and nineteenth of the month. If that were the case, the worm probed a
randomly generated list of machines for a vulnerability and continued the infection cycle.
Between the twentieth and twenty eighth of every month, the worm turned its attention
from other machines and proceeded to launch a denial of service attack on the official
White House web page, www.whitehouse.gov. The worm remained dormant between the
twenty eighth and the end of the month.
 Due to a programming flaw, CodeRed-I spread slower than intended, yet infected
enough hosts to cause a significant denial of service slowdown in the infected systems.
Its attempted attack on the White House Web page failed, because the site was moved to
a new IP address, following an intelligence alert.3 The worm code continued to target the
old address, while legitimate traffic was redirected to the new address.
 A more destructive sequel, CodeRed-II, followed soon. CodeRed-II was similar to
its predecessor, but had a greater impact on the global information infrastructure and did
more harm, in part due to its more efficient propagation algorithm.4 The new version
spread multiple times faster and also created a back door5 on infected systems. The
backdoor installed by CodeRed-II enabled a hacker to gain access to confidential files

2 The attacks occurred shortly after Microsoft had discovered the vulnerability and issued a patch to fix it.
Microsoft, A Very Real and Present Threat to the Internet.
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/topics/codealrt.asp.
Section xxx discusses the principles of the buffer overflow vulnerability.

3 Jeremy D. Baca, Windows Remote Buffer Overflow Vulnerability and the Code Red Worm. SANS
Institute White Paper (September 10, 2001). ("With plenty of warning about the coming attack, the site's IP
address was moved from 198.137.240.91 to 198.137.240.92.")

4 CodeRedII infected more than 359,000 computers in fourteen hours. See, e.g., Silicon Defense, Code Red
Analysis Page. http://www.silicondefense.com/cr/.

5 A back door is a method of gaining remote access to a computer, and is usually not detectable by casual
inspection. See, e.g., http://en.wikipedia.org/wiki/Back_door. A backdoor may, for instance, consist of a
password recognition routine installed in the computer, perhaps as a modification of a legitimate program.
The routine would enable a hacker who provided the right input to gain access to confidential files and
programs on the computer.

and programs on the compromised computer.6 CodeRed-II exploited the same
vulnerability as its predecessors.7
 On August 4, 2001, a new worm, CodeRed-III, appeared, which exploited the
same vulnerability as its predecessors.8 CodeRed-III would infect its target system,
initiate its propagation mechanism, and set up a back door into the infected machine.
After installing the backdoor, it remained dormant for a day, rebooted the machine, and
began to spread. The back door allowed remote, administrator-level access to the infected
machine. This enabled the compromised system to be used as a launching pad for future
denial of service attacks, among other hazards.9

 The CodeRed family of worms was promptly followed by the fast spreading and
complex threat, named Nimda. Nimda struck on 18 September 2001, within days of
warnings issued by government agencies, including the Federal Bureau of Investigation
and the National Infrastructure Protection Center. Nimda was described as "the most
complicated malicious application to strike the Internet to date," and the office of the US
Attorney-General predicted that Nimda would be more harmful than CodeRed.10
 Nimda was a worm, but, like CodeRed, differentiated itself from other Internet
worms in its exploitation of network security flaws, its use of multiple vectors of
infection and propagation, and the resulting efficiency and speed by which it spread.
Among many exploits, Nimda searched automatically for vulnerable Microsoft IIS Web
servers to infect, and it used backdoors created by CodeRed. The different attack vectors
resulted in multiple points of damage, which made clean-up particularly difficult after a

6 Jeremy D. Baca, Windows Remote Buffer Overflow Vulnerability and the Code Red Worm. SANS
Institute White Paper (September 10, 2001), at 5.

7 Attacks occurred despite the fact that a patch had been issued for the vulnerability by Microsoft before
the first attack. The Code Red-I as well as Code Red II worms could, for instance, not infect a system that
had the MS01-033 patch installed. See, e.g., Baca, at 6 ("There was so much publicity and so many
published articles by the time Code Red II hit, that any competent server manager would have had ample
opportunity to patch their systems in time.") CodeRed-II also compromised devices with web interfaces,
such as routers, switches, DSL modems, and printers. See, e.g., Cisco Systems, Inc., Cisco Security
Advisory: Code Red Worm - Customer Impact. http://www.cisco.com/warp/public/707/cisco-code-red-
worm-pub.shtml.

8 eEye Digital Security, CodeRedII Worm Analysis, August 2001.
http://www.eeye.com/html/Research/Advisories/AL20010804.html.

9 A denial-of-service attack (also, DoS attack) is an attack on a computer system or network that causes a
loss of service to users, typically the loss of network connectivity and services by consuming the
bandwidth of the victim network or overloading the computational resources of the victim system.

10 George V. Hulme, Nimda's Biography, InformationWeek, September 19, 2001.

Nimda attack.11 Nimda's infection and attack vectors were not novel, individually, but
their combination constituted a new level of complexity in malevolent code.
 CodeRed and Nimda were the forerunners of a new genre of modern malevolent
software, known as blended attacks. Information security scholars have described the
succession of blended attacks ushered in by CodeRed and Nimda as the "fourth wave of
modern worms." The fourth wave followed the initial experimental wave of the 1980s,
the second wave of polymorphic viruses and virus toolkits, and the third wave of mass e-
mail viruses, such as Melissa, of the late 1990s.12
 Blended threats are diverse, but they have two main characteristics in common,
namely (i) exploitation of one or more security vulnerabilities, and (ii) multivector
malevolent code with multiple destructive properties. The combination creates synergies
that make blended threats significantly more hazardous than their predecessors.13

 Blended attacks create complex liability issues. In a negligence action14 involving
a blended attack, the two most likely defendants are (i) the person responsible for the
security vulnerability, and (ii) the person who programmed and distributed the virus or
worm to exploit the vulnerability. The former, the original tortfeasor, may be a software
designer or commercial vendor and as such, likely to be solvent and able to pay a tort
judgment. The second tortfeasor, the hacker or virus distributor, on the other hand, is
often judgment-proof.

11 Chen and Robert, The Evolution of Viruses and Worms, at 10 ("Even if found, the worm [Nimda] was
very difficult to remove because it makes numerous changes to Registry and System files. It creates an
adminstrative share on the C drive, and creates a guest account in the administrator group allowing anyone
to remote login as guest with a blank password.")

12 The first wave consisted of the experimental viruses and worms of the time period, 1979 through 1990;
the second wave introduced polymorphism and virus toolkits; the third wave, roughly spanning 1999
through late 2000 brought the mass e-mail viruses, such as Melissa. The wave of blended attacks
introduced by CodeRed and Nimda is commonly described as the fourth wave of modern worms. See, e.g.,
Chen and Robert, The Evolution of Viruses and Worms.

13 Peter Szor, THE ART OF COMPUTER VIRUS RESEARCH AND DEFENSE (Symantec Press, 2005), at
366 ("Security exploits, commonly used by malicious hackers, are being combined with computer viruses,
resulting in very complex attacks that sometimes go beyond the general scope of antivirus software."); and
Id, at 542 ("[H]ighly infectious worms [such as CodeRed and Slammer] jump ... over the Internet using
buffer overflow attacks on networked services. Because the files need not be created on disk and the code
is injected into the address space of the vulnerable processes, even file integrity systems remain challenged
by this particular type of attack.")

14 Negligence is the most widely used theory of liability in the law of torts. See, e.g., James A. Henderson,
Why Negligence Law Dominates Tort, 50 UCLA L. REV. 377 (2003). See, also, Gary T. Schwartz, The
Vitality of Negligence and the Ethics of Strict Liability, 15 GA. L. REV. 963 (1981); Gary T. Schwartz, The
Beginning and the Possible End of Modern American Tort Law, 26 GA. L. REV. 601 (1992).

 The liability of an original tortfeasor is usually cut off by an intervening crime or
intentional tort. Suppose, for instance, a technician negligently fails to fasten the wheels
of plaintiff's car properly. A wheel comes off, leaving the plaintiff stranded on a busy
highway. The stranded plaintiff is subsequently struck by a passing driver who failed to
pay attention. The technician and the inattentive driver were both negligent and would
both be held liable for the plaintiff's harm. The inattentive driver's inadvertent negligence
would not cut off the liability of the mechanic. Suppose, alternatively, a passing driver is
in a mood to kill someone, and seeing the stranded motorist as a convenient target, shoots
him. In this scenario, the passing driver's intentional or criminal intervention would cut
off the liability of the negligent mechanic, and shift liability exclusively to the second
wrongdoer. Such a liability shift from a solvent original tortfeasor to a judgment-proof
cyber attacker may leave a victim without recourse. The original tortfeasor's liability may
be preserved, however, under the Encourage Free Radical (EFR) doctrine.
 The EFR doctrine preserves the liability of an original tortfeasor who has
encouraged individuals who are shielded from liability by anonymity, insufficient assets,
lack of mental capacity, or lack of good judgment.15 Such trouble-prone individuals are
termed "free radicals," because of their tendency to bond with trouble. Examples of free
radicals include children, anonymous crowds, criminals, terrorists, and mentally
incompetent individuals.16
 The EFR doctrine recognizes that the prospect of negligence liability is
ineffective against defendants who are shielded from or otherwise undeterred by the
prospect of liability. The deterrence rationale of negligence law would be defeated if
responsible people who encourage free radicals were allowed to escape judgment by
shifting liability to undeterrable free radicals. Common law negligence rules therefore
impose liability on the first tortfeasor, the encourager of the free radicals, even when
intentional or criminal behavior by a free radical intervenes.

15 For a discussion of the effects of the judgment-proof problem on the deterrence and insurance goals of
torts, see, e.g., Steven Shavell, The Judgment Proof Problem, 6 INT'L REV. LAW & ECON, 45 (1986);
Henry Hansmann and Reinier Kraakman, Toward Unlimited Shareholder Liability for Corporate Torts,
100 YALE L J 1879, 1882-83; John G. Fleming, Report to the Joint Committee of the California
Legislature on Tort Liability of the Problems Associated with American Motorcycle Association v Superior
Court, 30 HASTINGS L J 1465, 1470 (1979); William R. Keeton and Evan Kwerel, Externalities in
Automobile Insurance and the Underinsured Driver Problem, 27 J LAW & ECON 149, 149-50 (1984);
John Summers, Comment, The Case of the Disappearing Defendant: An Economic Analysis, 132 U PA L
REV, 145, 145 (1983).

16 Mark F. Grady, Proximate Cause Decoded, 50 UCLA L. REV. 293, 306-312 (2002).

 The analysis in the article suggests that virus authors and distributors have
properties commonly associated with free radicals. The analysis informs, furthermore,
that the factors that influence courts in holding a defendant liable for encouraging free
radicals are present in a typical blended attack. We conclude that liability will be
preserved against a primary tortfeasor whose negligence was responsible for a
vulnerability intentionally exploited by a free radical cyber attacker. The primary
tortfeasor is likely a solvent commercial entity, while the attacker is often judgment-
proof, or otherwise shielded from liability. The result is therefore significant, especially
for the victim of a blended attack seeking to recover damages related to the attack.
 Section 2 introduces the principles of malevolent software, blended attacks, and
the (currently) most commonly exploited security vulnerability, the buffer overflow.
Section 3 discusses liability issues in blended attacks. Section 4 analyzes the EFR
doctrine in the context of blended attacks. A final section discusses and concludes.

2. Malevolent Software

Background

Malevolent software is a term for code that is intended to cause damage to or disrupt the
operation of a computer system. The most common of these rogue programs is the
computer virus, and its common variant, the worm. Other forms of malicious software
include so-called logic bombs, Trojan horses, and trap doors.17

 The term "virus," Latin for "poison," was first formally defined by Dr. Fred
Cohen in 1983,18 even though the concept goes back to John von Neumann's studies of
self-replicating mathematical automata in the 1940s.19 Dr. Cohen describes a computer
virus as a series of instructions, in other words, a program, that (i) infects other computer
programs and systems by attaching itself to a host program in the target system, (ii)
executes when the host is executed, and (iii) spreads by cloning itself, or part of itself,
and attaching the copies to other host programs on the system or network. In addition,

17 See, e.g., DOROTHY E. DENNING and PETER J. DENNING, INTERNET BESIEGED (ACM Press, New
York, 1998), at 75-78.

18 FRED COHEN, COMPUTER VIRUSES. PhD dissertation, University of Southern California (1985).

19 Jeffrey O. Kephart et al., Fighting Computer Viruses, SCIENTIFIC AMERICAN, November 1997. Dr.
Gregory Benford published the idea of a computer virus as "unwanted code." Benford apparently wrote
actual "viral" code, capable of replication. DOROTHY E. DENNING and PETER J. DENNING, INTERNET
BESIEGED (ACM Press, New York, 1998), at 74.

many viruses have a so-called payload capable of harmful side-effects, such as data
corruption.20
 A worm21 is a special type of virus. It is similar to a virus in most ways, except
that it is self-replicating. A worm does not need to attach itself to a host program to
replicate and spread. Like viruses, worms often carry payloads capable of destructive
behavior, such as deleting files on the system through which it propagates. Worms
without a destructive payload can nevertheless slow down a system significantly through
the network traffic it generates with its prolific replication and spreading.22

 The first worm was implemented by scientists at Xerox PARC, in 1978.23 The so-
called Morris Worm, created by Cornell University graduate student, Robert T. Morris,
was the first worm to become a household name. The 1989 Morris worm used a security
flaw in a UNIX program to invade and shut down much of the Internet. By some
accounts, this event first woke the world up to the dangers of the computer vulnerability
known as the buffer overflow.24

 As the definition suggests, computer viruses consist of three basic modules or
mechanisms, namely an infection mechanism, a payload trigger, and the payload. The
infection mechanism allows the virus to replicate and spread, analogously to a biological
virus. This is the most salient property of a computer virus.25 The infection module first

20 JOHN MACAFEE AND COLIN HAYNES, COMPUTER VIRUSES, WORMS, DATA DIDLERS, KILLER
PROGRAMS, AND OTHER THREATS TO YOUR SYSTEM, at 26; FREDERICK B. COHEN, A SHORT
COURSE ON COMPUTER VIRUSES (Wiley, 1994, 2d ed.), at 1-2.
 In his PhD dissertation, Dr. Cohen defined a virus simply as any program capable of self-
reproduction. This definition appears overly general. A literal interpretation of the definition would classify
even programs such as compilers and editors as viral. DOROTHY E. DENNING and PETER J. DENNING,
INTERNET BESIEGED (ACM Press, New York, 1998), at 75.

21 The Concise Oxford English Dictionary (Rev. 10th ed.) defines a worm as "[a] self-replicating program
able to propagate itself across a network, typically having a detrimental effect."

22 See, generally, John F. Schoch and Jon A. Hupp, The "Worm" Programs - Early Experience with a
Distributed Computation, COMM. ACM, Vol 25, No 3, March 1982, 172.

23 http://www.parc.xerox.com/about/history/default.html.

24 Takanen et al., Running Malicious Code By Buffer Overflows: A Survey of Publicly Available Exploits,
162. EICAR 2000 Best Paper Proceedings. ("The day when the world finally acknowledged the risk
entailed in overflow vulnerabilities and started coordinating a response to them was the day when the
Internet Worm was introduced, spread and brought the Internet to its knees.") Available at
http://www.papers.weburb.dk.

25 LANCE J. HOFFMAN (ed.), ROGUE PROGRAMS: VIRUSES, WORMS, TROJAN HORSES (Van Nostrand
Reinhold, 1990), at 247 ("The ability to propagate is essential to a virus program"); DOROTHY E.
DENNING and PETER J. DENNING, INTERNET BESIEGED (ACM Press, New York, 1998), at 73-75.

searches for an appropriate executable host program to infect. It then installs a copy of
the virus into the host, provided the host has not yet been infected.
 When the host program executes, the virus is also executed. Upon execution, the
virus typically performs the following sequence of actions. It replicates ("clones") by
copying itself to other executable programs on the computer.26 During execution, the
virus program also checks whether a triggering condition is satisfied. When the condition
is satisfied, the virus executes its harmful component, the so-called payload module.
Triggering events come in a variety of forms, such as a certain number of infections,
Michelangelo's birthday, or the occurrence of a particular date. The Friday-the-13th
virus, for instance, only activated its payload on dates with the cursed designation.27

More recently, the first CodeRed worm alternated between continuing its infection cycle,
remaining dormant, and attacking the official White House web page, depending on the
day of the month.
 Execution of the payload may produce harmful side-effects, such as destruction or
corruption of data in spreadsheets, word processing documents and data bases, and theft
of passwords.28 Some effects are particularly pernicious because they are subtle and
undetectable until substantial harm has been done. Subtle harmful viral effects include
transposing numbers, moving decimal places, stealing passwords and other sensitive
information.29 Payloads are not necessarily destructive, and may involve no more than
displaying a humorous message.30 Some virus strains do not destroy or corrupt

26 Potential target hosts include application and system programs, and the master boot record of the hard
disks or floppy disks in the computer.

27 See, e.g., Eric J. Sinrod and William P. Reilly, Cyber Crimes A Practical Approach to the Application of
Federal Computer Crime Laws, 16 Santa Clara Computer & High Tech. L. J. 177 (2000), at 217, n. 176.

28 JAN HRUSKA, COMPUTER VIRUSES AND ANTI-VIRUS WARFARE, (Ellis Horwood Ltd., 1990), at 17,
18. (In addition to self-replicating code, viruses often also contain a payload. The payload is capable of
producing malicious side-effects.) See, also, FREDERICK B. COHEN, A SHORT COURSE ON COMPUTER
VIRUSES (Wiley, 1994, 2d ed.), at 8-15 (examples of malignant viruses and what they do.); JOHN
MACAFEE AND COLIN HAYNES, COMPUTER VIRUSES, WORMS, DATA DIDLERS, KILLER
PROGRAMS, AND OTHER THREATS TO YOUR SYSTEM, at 61.

29 JOHN MACAFEE AND COLIN HAYNES, COMPUTER VIRUSES, WORMS, DATA DIDLERS, KILLER
PROGRAMS, AND OTHER THREATS TO YOUR SYSTEM, at 61.

30 Sinrod & Reilly, at 218 (describing the W95.LoveSong.998 virus, designed to trigger a love song on a
particular date.)

information, but consume valuable computing resources.31 Viruses and worms used in
blended attacks, however, are harmful by design.
 A virus may infect a computer or a network through several possible points of
entry, including via an infected file downloaded from the Internet, through web browsing,
via an infected e-mail attachment, or even through infected commercial shrinkwrapped
software.32 Fast-spreading worms, such as CodeRed and Blaster, can only infect new
hosts that contain one or more exploitable vulnerabilities.33 The recent trend in virus
transmission has been a decrease in infected diskettes, and an increase in infection
through e-mail attachments. In a 1996 national survey, for instance, approximately 9
percent of respondents listed e-mail attachments as the means of infection of their most
recent virus incident, while 71 percent put the blame on infected diskettes. In 2003, the
corresponding numbers were 88 percent for e-mail attachments, and zero for diskettes.34

 It was once believed that viruses could not be transmitted by data files, such as e-
mail attachments. Viruses such as the infamous Melissa taught us otherwise. Melissa
typically arrived in the e-mail inbox of its victim, disguised as an e-mail message with a

31 Viruses can cause economic losses, e.g. by filling up available memory space, slowing down the
execution of important programs, locking keyboards, adding messages to printer output, and effectively
disabling a computer system by altering its boot sector. The Melissa virus, for instance, mailed copies of
itself to everyone in the victim's e-mail address book, resulting in clogged e-mail servers and even system
crashes. See, e.g., PHILIP FRITES, PETER JOHNSTON AND MARTIN KRATZ, THE COMPUTER VIRUS
CRISIS (Van Nostrand Reinhold, New York, 2d ed., 1992), 23-4 ("The Christmas card [virus] stopped a
major international mail system just by filling up all available storage capacity."); Sinrod & Reilly, at 218
(describing the Melissa virus.)

See Section 6 for an analysis of damages from computer virus infection. For examples of benign viruses
and how they operate, see, e.g., FREDERICK B. COHEN, A SHORT COURSE ON COMPUTER VIRUSES
(Wiley, 1994, 2d ed.), at 15-21.

32 There are three mechanisms through which a virus can infect a program. A virus may attach itself to its
host as a shell, an add-on, or as intrusive code. A shell virus forms a shell around the host code, so that the
latter effectively becomes an internal subroutine of the virus. The host program is replaced by a
functionally equivalent program that includes the virus. The virus executes first, and then allows the host
code to begin executing. Boot program viruses are typically shell viruses. Most viruses are of the add-on
variety. They become part of the host by appending their code to the host code, without altering the host
code. The viral code alters the order of execution, by executing itself first and then the host code. Macro
viruses are typically add-on viruses. Intrusive viruses, in contrast, overwrite some or all of the host code,
replacing it with its own code. See, e.g., DOROTHY E. DENNING and PETER J. DENNING, INTERNET
BESIEGED (ACM Press, New York, 1998), at 81; PHILIP FRITES, PETER JOHNSTON AND MARTIN
KRATZ, THE COMPUTER VIRUS CRISIS (Van Nostrand Reinhold, New York, 2d ed., 1992), at 73-75.

33 Peter Szor, The Art of Computer Virus Research and Defense (2005), chapter 10 (extensive discussion
of viruses that use exploits to spread themselves.) Blended attacks that depend on vulnerabilities to spread,
are discussed in this article, section 2.

34 ICSA Labs 9th Annual Computer Virus Prevalence Survey 2003, Table 10, p. 14.

Microsoft Word attachment. When the recipient opened the attachment, Melissa
executed. First, it checked whether the recipient had the Microsoft Outlook e-mail
program on its computer. If Outlook were present, Melissa would mail a copy of itself to
the first fifty names in Outlook's address book, creating the appearance to the fifty new
recipients that the infected person had sent them a personal e-mail message. Melissa
would then repeat the process with each of the fifty recipients of the infected e-mail
message (provided they had Outlook), by automatically transmitting clones of itself to
fifty more people. A Melissa attack frequently escalated and resulted in clogged e-mail
servers and system crashes.35
 We now turn to a discussion of defenses against malevolent software.

Technical defenses against malevolent code

Anti-virus technology comes in two broad categories, namely "virus-specific" and
"generic." Virus-specific technology, such as signature scanners, detect known viruses by
indentifying patterns that are unique to each virus strain. These identifying patterns,
known as signatures, are analogous to human fingerprints. Generic anti-virus technology,
on the other hand, detects the presence of a virus by recognizing generic virus-like
behavior, usually without identifying the particular strain.
 A virus-specific scanner typically makes a specific announcement, such as, "the
operating system is infected with the Cascade virus," while its generic counterpart may
simply state, "the operating system is (or may be) infected with an (unidentified) virus."
Virus-specific technology is more accurate with known strains and produces fewer false
positives, but generic technology is better at detecting unknown viruses.
 Technical anti-virus defenses come in four varieties, namely scanners, activity
monitors, integrity checkers, and heuristic techniques.36 Scanners are virus-specific,
while activity monitors and integrity checkers are generic. Activity monitors look out for
suspicious, virus-like activity in the computer. Integrity checkers sound an alarm when
detecting suspicious modifications to computer files. Heuristic techniques combine virus-

35 David Harley et al., VIRUSES REVEALED UNDERSTAND AND COUNTER MALICIOUS SOFTWARE
(Osborne/McGraw-Hill, 2001), 406-410.

36 See, e.g., DOROTHY E. DENNING and PETER J. DENNING, INTERNET BESIEGED (ACM Press, New
York, 1998), at 90-93; KEN DUNHAM, BIGELOW'S VIRUS TROUBLESHOOTING POCKET REFERENCE,
(McGraw-Hill 2000), at 78-83 and 102-108.

specific scanning with generic detection, providing a significantly broadened range of
detection.
 Scanners are the most widely used anti-virus defense. A scanner reads executable
files and searches for known virus patterns. These patterns, or "signatures," are the most
reliable technical indicator of the presence of a file-resident virus in a computer system.
A virus signature consists of patterns of hexadecimal digits embedded in the viral code,
that are unique to the strain.37 These signatures are created by human experts, such as
researchers at IBM's High Integrity Computing Laboratory, who scrutinize viral code and
extract sections of code with unusual patterns. The selected byte patterns then constitute
the signature of the virus.38 The scanner announces a match with its database of known
viral signatures as a possible virus.
 The virus signature pattern is selected to be a reliable indicator of the presence of
a virus. An ideal virus signature gives neither false negatives nor false positives.39 In
other words, it should ideally always identify the virus when present and never give a
false alarm when it is not.40 The IBM High Integrity Computing Laboratory has
developed an optimal statistical signature extraction technique that examines all sections
of code in a virus, and selects the byte strings that minimize the incidence of false
positives and negatives.41
 Scanners are easy to use, but they are limited to detecting known virus signatures.
A scanner's signature database has to be continually updated, a burdensome requirement
in an environment where new viruses appear rapidly. Use of scanners is further

37 JAN HRUSKA, COMPUTER VIRUSES AND ANTI-VIRUS WARFARE (Ellis Horwood, Ltd., 1990), at 42.

38 JEFFREY O. KEPHART ET AL., Automatic Extraction of Computer Virus Signatures, Proceedings of the
4th Virus Bulletin International Conference, R. Ford, ed., Virus Bulletin Ltd., Abingdon, England, 1994,
pp. 179-194, at 2.

39 A false positive is an erroneous report of the activity or presence of a virus where there is none. A false
negative is the failure to report the presence of a virus when a virus is in fact present.

40 JAN HRUSKA, COMPUTER VIRUSES AND ANTI-VIRUS WARFARE (Ellis Horwood, Ltd., 1990), at 42.
For short descriptions and hexadecimal patterns of selected known viruses, see HRUSKA at 43-52;
JEFFREY O. KEPHART ET AL., Blueprint for a Computer Immune System, IBM Thomas J. Watson
Research Center Report, at 11 ("[A] signature extractor must select a virus signature carefully to avoid both
false negatives and false positives. That is, the signature must be found in every instance of the virus, and
must almost never occur in uninfected programs.") False positives have reportedly triggered a lawsuit by a
software vendor, who felt falsely accused, against an anti-virus software vendor. JEFFREY O. KEPHART
ET AL., Blueprint for a Computer Immune System, IBM Thomas J. Watson Research Center Report, at 11.

41 Jeffrey O. Kephart et al., Automatic Extraction of Computer Virus Signatures, Proceedings of the 4th
Virus Bulletin International Conferenc e, R. Ford, ed., Virus Bulletin Ltd., Abingdon, England, 1994, pp.
179-194.

complicated by the occurrence of false positives. This occurs when a viral pattern in the
database matches code that is in reality a harmless component of otherwise legitimate
data. A short and simple signature pattern will be found too often in innocent software,
and produce many false positives. Viruses with longer and more complex patterns will
less often give a false positive, but at the expense of more false negatives.42 Finally, as
the number of known viruses grows, the scanning process will inevitably slow down as a
larger set of possibilities has to be evaluated.43

 Activity monitors are resident programs that monitor activities in the computer for
behavior commonly associated with viruses. Suspicious activities include operations such
as attempts to rewrite the boot sector, format a disk, mass mail multiple copies of itself,
or modify parts of main memory. When suspicious activity is detected, the monitor may
simply halt execution and issue a warning to alert the user, or take definite action to
neutralize the activity.44 Activity monitors, unlike scanners, do not need to know the
signature of a virus to detect it. It works for all viruses, known as well as unknown. It's
function is to recognize suspicious behavior, regardless of the identity of the culprit.
 The greatest strength of activity monitors is their ability to detect unknown virus
strains, but they also have significant weaknesses. They can only detect viruses that are
actually being executed, possibly after substantial harm has been done. A virus may,
furthermore, become activated before the monitor code, and escape detection until well
after execution has begun. A virus may also be programmed to alter monitor code on
machines that do not have protection against such modification. A further disadvantage
of activity monitors is the lack of unambiguous and foolproof rules governing what
constitutes "suspicious" activity. This may result in false alarms when legitimate
activities resemble virus-like behavior. Recurrent false alarms may ultimately lead users
to ignore warnings from the monitor. Conversely, not all "illegitimate" activity may be
recognized as such, leading to false negatives.45

42 KEN DUNHAM, BIGELOW'S VIRUS TROUBLESHOOTING POCKET REFERENCE, (McGraw-Hill
2000), at 78-83; Jeffrey O. Kephart et al., Fighting Computer Viruses, SCIENTIFIC AMERICAN, November
1997. See, also, Sandeep Kumar and Eugene H. Spafford, A Generic Virus Scanner in C++, Technical
report CSD-TR-92-062, Dept. of Computer Science, Indiana University, at 6-8.

43 See, e.g., Pete Lindstrom, The Hidden Costs of Virus Protection, Spire Research Report, June 2003, at 5
("In this day of 80,000+ known viruses and frequent discovery of new ones, the size of the signature file
can be large, particularly if the updates are sent out as cumulative ones. Large updates can clog the network
pipelines ... and reduce the frequency that an administrator will push them out to the end users.")

44 Sandeep Kumar and Eugene H. Spafford, A Generic Virus Scanner in C++, Technical report CSD-TR-
92-062, Dept. of Computer Science, Indiana University, at 3-4.

45 JAN HRUSKA, COMPUTER VIRUSES AND ANTI-VIRUS WARFARE, (Ellis Horwood Ltd., 1990), at 75.

 Integrity checkers look for evidence of file tampering, such as "unauthorized"
changes in system areas and files. The typical integrity checker is a program that
generates a code, known as a "checksum," for files that are to be protected from viral
infection. A file checksum may, for instance, be some arithmetic calculation based on the
total number of bytes in the file, the numerical value of the file size and creation date.
The checksum effectively operates as a "signature" of the file. These checkcodes are
periodically recomputed and compared to the original checksum. Tampering with a file
will change its checksum. Hence, if the recomputed values do not match the original
checksum, the file has presumably been modified since the previous check, and a
warning is issued. Since viruses modify and change the contents of the files they infect, a
change in the checksum may be a sign of viral infection.46
 The advantage of integrity checking is that it detects most instances of viral
infection, as infection must alter the target file. The main drawback is that it tends to
generate many false alarms, as a file can change for "legitimate" reasons unrelated to
virus infection.47 On some systems, for instance, files change whenever they are
executed. A relatively large number of false alarms may trigger compliance lapses, as
users may ignore warnings or simply not use the utility. Integrity checking works best on
static files, such as system utilities, but is, of course, inadequate for files that naturally
change frequently, such as Word documents.
 A fourth category of virus detectors uses heuristic detection methods. Heuristic
rules are rules that solve complex problems "fairly well" and "fairly quickly," but less
than perfectly. Virus detection is an example of a complex problem that is amenable to
heuristic solution. It has been proven mathematically that it is impossible to write a
program that is capable of determining with 100 percent accuracy whether a particular
program is infected with a virus, from the set of all possible viruses, known as well as
unknown.48 Heuristic virus detection methods accept such limitations and attempt to

46 PHILIP FRITES, PETER JOHNSTON AND MARTIN KRATZ, THE COMPUTER VIRUS CRISIS (Van
Nostrand Reinhold, New York, 2d ed., 1992), Figures 5.2-5.5, at 69-76; KEN DUNHAM, BIGELOW'S
VIRUS TROUBLESHOOTING POCKET REFERENCE, (McGraw-Hill 2000), at 79. See, also, Sandeep
Kumar and Eugene H. Spafford, A Generic Virus Scanner in C++, Technical report CSD-TR-92-062,
Dept. of Computer Science, Indiana University, at 5-6.

47 PHILIP FRITES, PETER JOHNSTON AND MARTIN KRATZ, THE COMPUTER VIRUS CRISIS (Van
Nostrand Reinhold, New York, 2d ed., 1992), at 125.

48 Diomidis Spinellis, Reliable Identification of Bounded-Length Viruses is NP-Complete, IEEE
TRANSACTIONS ON INFORMATION THEORY, 49(1), 280, 282 (January 2003) (Stating that theoretically
perfect detection is in the general case undecidable, and for known viruses, NP-complete.); Carey
Nachenberg, Future Imperfect, VIRUS BULLETIN, August 1997, 6. See, also, Francisco Fernandez,

achieve a solution, namely a detection rate that is "pretty good," albeit below the
(unachievable) perfect rate.
 Heuristic virus detection methods examine executable code and scrutinize its
structure, logic and instructions for evidence of "virus-like" behavior. Based on this
examination, the program makes an assessment of the likelihood that the scrutinized
program is a virus, by tallying up a score. Instructions to send an e-mail message with an
attachment to everyone in an address book, for instance, would add significantly to the
score. Other high-scoring routines include capabilities to replicate, to hide from
detection, and to execute some kind of payload. When a certain threshold score is
reached, the code is classified as malevolent, and the user so notified.
 The assessment is necessarily less than perfect and occasionally provides false
positives and negatives. Many legitimate programs, including even some anti-virus
programs, perform operations that resemble virus-like behavior.49 Nevertheless, state-of-
the-art heuristic scanners typically achieve a 70-80 percent success rate at detecting
unknown viruses.50
 A heuristic scanner typically operates in two phases. The scanning algorithm first
narrows the search by, for instance, identifying the location most likely to contain a virus.
It then analyzes the code from that location to determine its likely behavior upon
execution. A static heuristic scanner typically compares the code from the "most likely"
location to a database of byte sequences commonly associated with virus-like behavior.51
The algorithm then decides whether to classify the code as viral.52

Heuristic Engines, Proceedings of the 11th International Virus Bulletin Conference, September 2001,
Virus Bulletin Ltd., Abingdon, England, 1994, pp. 407-444; Chess & White, Undetectable Computer
Virus, at http://www.research.ibm.com/antivirus/SciPapers/VB2000DC.htm.

49 Francisco Fernandez, Heuristic Engines, Proceedings of the 11th International Virus Bulletin
Conference, September 2001, Virus Bulletin Ltd., Abingdon, England, 1994, at 409 ("Many genuine
programs use sequences of instructions that resemble those used by viruses. Programs that use low-level
disk access methods, TSRs, encryption utilities, and even anti-virus packages can all, at times, carry out
tasks that are performed by viruses.")

50 Carey Nachenberg, Future Imperfect, VIRUS BULLETIN, August 1997, at 7.

51 Certain byte sequences are, for instance, associated with decryption loops to unscramble a polymorphic
virus when an infected routine is executed. If it finds a match, e.g. the scanner detects the presence of a
decryption loop typical of a polymorphic virus, it catalogues this behavior.

52 Sandeep Kumar and Eugene H. Spafford, A Generic Virus Scanner in C++, Technical report CSD-TR-
92-062, Dept. of Computer Science, Indiana University, at 4-5 ("Detection by static analysis/policy
adherence.")

 A dynamic heuristic scanner uses CPU emulation.53 It typically loads suspect
code into a virtual computer, emulates its execution and observes its behavior. Because it
is only a virtual computer, virus-like behavior can safely be observed in what is
essentially a laboratory setting, with no need to be concerned about real damage. The
program is monitored for suspicious behavior while it runs.54

 Although dynamic heuristics can be time-consuming due to the relatively slow
CPU emulation process, they are sometimes superior to static heuristics. This will be the
case when the suspect code (i) is obscure and not easily recognizable as viral in its static
state, but (ii) clearly reveals its viral nature in a dynamic state.
 A major advantage of heuristic scanning is its ability to detect viruses, including
unknown strains, before they execute and cause damage. Other generic anti-virus
technologies, such as behavior monitoring and integrity checking, can only detect and
eliminate a virus after exhibition of suspicious behavior, usually after execution.
Heuristic scanning is also capable of detecting novel and unknown virus strains, the
signatures of which have not yet been catalogued. Such strains cannot be detected by
conventional scanners, which only recognize known signatures. Heuristic scanners are
capable of detecting even polymorphic viruses, a complex virus family which complicate
detection by changing their signatures from infection to infection.55

 The explosive growth in new virus strains has made reliable detection and
identification of individual strains very costly, making heuristics more important and
increasingly prevalent.56 Commercial heuristic scanners include IBM's AntiVirus boot
scanner and Symantec's Bloodhound technology.

Blended Attacks

53 The CPU, or central processing unit, of a computer is responsible for data processing and computation.
See, e.g., JAN HRUSKA, COMPUTER VIRUSES AND ANTI-VIRUS WARFARE, (Ellis Horwood Ltd.,
1990), at 115; D. BENDER, COMPUTER LAW: EVIDENCE AND PROCEDURE (1982), §2.02, at 2-7, -9.

54 Sandeep Kumar and Eugene H. Spafford, A Generic Virus Scanner in C++, Technical report CSD-TR-
92-062, Dept. of Computer Science, Indiana University, at 4.

55 Polymorphic viruses have the ability to "mutate" by varying the code sequences written to target files.
To detect such viruses requires a more complex algorithm than simple pattern matching. See, e.g.,
DOROTHY E. DENNING and PETER J. DENNING, INTERNET BESIEGED (ACM Press, New York, 1998),
at 89.

56 Carey Nachenberg, Future Imperfect, VIRUS BULLETIN, August 1997, at 9.

CodeRed and Nimda were the forerunners of a new wave of modern malevolent software,
the blended attack.57 Blended attacks are more sophisticated, complex, faster, and
dangerous than their predecessors. They exploit computer security vulnerabilities, and
often create new vulnerabilities, to enhance their destructiveness. The earlier generation
of viruses, such as LoveLetter, Melissa and Michelangelo, in contrast, exploited only the
regular functionality of the systems they targeted.
 Blended threats are diverse, but they have two main characteristics in common,
namely (i) exploitation of security vulnerabilities, and (ii) malevolent code with multiple
destructive properties.

A. Blended threats exploit network vulnerabilities.

Blended threats are designed to take advantage of security vulnerabilities to gain access
to and compromise a system.58 The buffer overflow is currently (and has for over a
decade been) the most commonly exploited vulnerability to get unauthorized access to a
system.59 A buffer overflow vulnerability allows executable malevolent code to be
copied into memory of a target computer. A skilfull attacker can then exploit the
vulnerability to manipulate the computer to remotely execute the malevolent code.60

 Other security flaws, such as input validation vulnerabilities, are also frequently
exploited by blended threats. A web page exhibits an input vulnerability, for instance, if
it asks for user input, such as an e-mail address, without verifying that the user-provided
address is in the proper form. Such a flaw may enable a hacker to manipulate the system
by providing a specially formatted input. The uncensored input may cause the system to
perform in a way that compromises its security.

57 The wave of blended attacks introduced by CodeRed and Nimda is commonly described as the fourth
wave of modern worms. The first wave consisted of the experimental viruses and worms of the time
period, 1979 through 1990; the second wave introduced polymorphism and virus toolkits; the third wave,
roughly spanning 1999 through late 2000 brought the mass e-mail viruses, such as Melissa. Chen and
Robert, The Evolution of Viruses and Worms.

58 Symantec Internet Security Threat Report, Volume III, February 2003, at 34, 35 (By exploiting IT
vulnerabilities, blended threats are frequently able to bypass conventional security practices such as
requiring strong, non-default passwords, as long as systems have the type of vulnerability exploited by the
attack.)

59 Eric Chien and Peter Szor, Blended Attack Exploits, Vulnerabilities and Buffer-Overflow Techniques in
Computer Viruses. Symantec White Paper. Originally appeared in Virus Bulletin, 2002. The buffer
overflow is discussed in the next subsection.

60 See subsection, "Buffer overflow", infra, p. xxx.

 Vendors are usually quick to issue patches to fix vulnerabilities as soon as they
are discovered, but users tend to be slow in implementing them, and even if several
vulnerabilities are patched, some may remain that can be exploited. By some estimates,
even if 90 percent of the users of a particular technology with a newly discovered
vulnerability could be trusted to implement the security patch issued by the vendor, the
remaining unpatched systems could still allow enough hijackings to launch a denial of
service attack on millions of other systems and networks.61 Successive generations of
CodeRed plagued the Internet despite the fact that each attack and the role played by the
vulnerability were widely publicized, and that a security patch to fix the vulnerability had
been made available even before the first CodeRed attack.

B. Blended threats employ malevolent software with multiple destructive properties.

Blended attacks employ viruses and worms with multiple destructive properties. The
properties are usually not individually novel, but their combination in one virus or worm
is unique. The payloads of blended threats are multidimensional and harmful by design.

1. Blended threats are harmful by design. Many conventional virus strains do little
besides being a mild nuisance. The earlier Italian PingPong virus, for instance, merely
displayed a bouncing ball, and the W95/LoveSong/998 virus was designed to trigger a
love song on a particular date.62 Blended threats, in contrast, are destructive by design.
Blended threats carry a variety of payloads, including mechanisms capable of triggering
DoS agents, deleting data files, and setting up backdoors in infected systems.63 The
CodeRed blended attack attempted to launch a full-scale denial of service attack on the
official White House web page. The Slammer worm infected more than 90 percent of
computers with a particular buffer overflow vulnerability withinh 10 minutes, and caused

61 George V. Hulme, One Step Ahead, InformationWeek (May 20, 2002).

62 Some earlier viruses were, of course, destructive. The 1987 South African Friday the 13th virus, for
instance, was programmed to delete its host program, if invoked on Friday the 13th.

63 Blended Threats: Case Study and Countermeasures. Symantec White Paper, at 2. See, also, George V.
Hulme, One Step Ahead, InformationWeek (May 20, 2002) (The destruction capabilities of a blended
threat include destruction of files, create backdoors, leave Trojan horses, and so-called zombie programs
that can later be used to launch denial of service attacks.) See, also, eEye Digital Security, CodeRed Worm
Analysis, August 2001. Available at http://www.eeye.com/Research/Advisories/AL20010804.html.

significant disruption to financial, transporation and government institutions, including
widespread ATM failures, canceled airline flights and interference with elections.64

2. Blended threats propagate by multiple methods, attack from multiple points, and
spread without human intervention. The typical blended threat attacks its target via
multiple attack methods and attack points, which enable them to spread more rapidly and
efficiently, and consume more computational resources and network bandwidth, and in a
shorter time period. The Nimda worm, for instance, attacked via five vectors, including
E-mail propagation using its own SMTP engine, and attack via backdoors left by worms
such as CodeRed.65
 Blended threats attack from multiple points, including injecting malicious code
into executable files on a system and targeting and infecting visitors to compromised
Web sites, often through innovative use of mass e-mail. Mass-mailing worms in blended
attacks frequently bypass existing e-mail applications by using their own e-mail servers
to spread. Such a worm could infect a computer with Microsoft Outlook, for instance,
and spread via e-mail without using the Outlook application.66

 Blended attacks do not require user intervention to trigger and spread, whereas
traditional viruses depend on such intervention. Melissa, for instance, required users to
actually open an e-mail attachment before the virus could execute and continue its
infection cycle. Blended attacks exploit vulnerabilities that allow them to dispense with
such interaction. A buffer overflow vulnerability in the e-mail servers Microsoft Outlook
and Outlook Express, for instance, enabled an e-mail worm to spread automatically. The
malicious code in the infected e-mail message could be executed merely by reading an
HTML message, without opening an attachment. The recipient could therefore not
protect herself by declining to open any attached files.

64 David Moore et al., Inside the Slammer Worm, IEEE SECURITY AND PRIVACY, July/August 2003, 33.

65 Nimda's other attack vectors were infection of Microsoft IIS web servers via a buffer overflow exploit;
infection of network shares; and infection via Javascript added to web pages. See, e.g., Thomas Chen,
Trends in Viruses and Worms, presentation at SMU Dept. of EE. Other attack points frequently used in
blended attacks include injecting malicious code into .exe files on a target system, creating world readable
network shares, making multiple registry changes, and adding script code to html files.

66 Symantec Internet Security Threat Report, Volume III, February 2003, at 36. [Describing the operation
of the typical mass-mailing worm: First, they exploit a known IT vulnerability to infect the system. Then,
they collect e-mail addresses from the infected system. Finally, they spread via their own e-mail system,
which is independent of the client e-mail system. This methodology enables the worm or virus to spread
and propagate without user intervention. Users whose systems have been hijacked in this manner are often
unaware that they are being used as launching pads for infected e-mails. In addition, these viruses
frequently spoof the "From" address on e-mails, obscuring the origin of the infected e-mail.]

 Blended threats are programmed to automatically search for and exploit new
vulnerabilities. Such vulnerabilities are often found in new and emerging technologies,
such as instant messaging technology, wireless local area networks, personal digital
assistants, peer to peer networks, and networked cellular telephones.67 Corporations and
government departments and agencies, which rely increasingly on such vulnerable new
technologies to conduct business, are particularly at risk. Many of these organizations
and agencies are crucial elements of the national critical information infrastructure,
including banking, transportation, communications and energy provision systems.
 We now turn to a discussion of the buffer overflow, the most commonly exploited
security vulnerability.

The Buffer Overflow

Buffers are data storage areas in memory with a limited capacity. Buffers often function
as temporary storage for data to be transferred between two devices that are not operating
at the same speed. The purpose of the temporary storage is to coordinate speed
differentials between the adjacent devices. A printer, for instance, is not capable of
printing data at the speed that it receives the data from the computer. A buffer in the
interface between the computer and printer typically resolves this bottleneck. Instead of
feeding the printer directly, the computer sends the data to the buffer. While the buffer
relays the information to the printer, at the printer's speed, the computer is freed up to
carry on with other tasks.68

 A buffer overflow occurs when a program attempts to fill a buffer with more data
than it was designed to hold. A buffer overflow is analogous to pouring ten ounces of
water into a glass designed to hold eight ounces. The water must obviously overflow
somewhere and create a mess. The glass represents a buffer and the water the application
or user data.69 The excess data typically overflow into adjacent memory locations where

67 Grey, M., Instant Messaging in the Enterprise Will Remain a Puzzle. Gartner Research Report COM-18-
7979 (22 November 2002). http://www.gartner.com; K. Dulaney and B. Clark, E-Mail/PIM Is Still No. 1.
Gartner Research Report SPA-18-5839 (20 November 2002). http://www.gartner.com. ["The 'always on'
nature of the connectivity, remote access to critical sensitive data, and the increasingly computational
nature of mobile devices, set the stage for a potential virus or worm of significance."] For a discussion of
vulnerabilities in instant messaging technology, see, e.g.,
http://securityresponse.symantec.com/avcenter/reference/secure.instant.messaging.pdf.

68 William S. Davis, OPERATING SYSTEMS: A SYSTEMATIC VIEW, at 27, 28.

69 Mark E. Donaldson, Inside the Buffer Overflow Attack: Mechanism, Method, & Prevention, SANS
Institute White Paper, at 3.

it can corrupt existing data, possibly changing the instructions, resulting in unintended
executions.
 The unintended executions could be harmless, but could also be malicious by
design. In the most benign scenario, the buffer overflow will cause the program to abort,
but without much further harm.70 In a darker scenario, a buffer overflow could allow a
hacker to remotely inject executable malicious code into the memory of a target
computer, and execute it.
 Suppose, for instance, the adjacent area ("overflow area") contained an instruction
pointer, which defines the instruction to be executed next. By overwriting this pointer,
the attacker can influence the program's next execution. The attacker may, for instance,
fill the buffer with malicious code, such as a virus or worm, and overwrite the pointer
with the address of the buffer. This would cause the execution path to change and cause
the program to execute the viral code in the buffer.71

 The most basic elements of a buffer overflow attack may be summarized as
follows:

1. Data are copied into the buffer.
2. The data overflow the buffer.
3. The overflow data overwrite the original procedure return address.
4. The new return address now points to the new data in the buffer, which may be
malevolent instructions.
5. These instructions trigger execution of the virus.

Schematically,72

70 The effect of a buffer overflow would be to abort the application program, resulting in a segmentation
fault and terminating with a core dump.

71 Microsoft Corporation defines a buffer overflow attack as follows:
"A buffer overflow attack is an attack in which a malicious user exploits an unchecked buffer in a program
and overwrites the program code with their own data. If the program code is overwritten with new
executable code, the effect is to change the program's operation as dictated by the attacker. If overwritten
with other data, the likely effect is to cause the program to crash." Mark E. Donaldson, Inside the Buffer
Overflow Attack: Mechanism, Method, & Prevention, SANS Institute White Paper, at 3.

72 The diagram is adapted from R. Enderle and J. Noel, The New Approach to Windows Security, at 7.
Enderle Group White Paper (2004).

Basic Buffer Overflow Mechanism

1. Data are copied into
 the buffer as normal

2. Data overflow buffer

3. Overflow data overwrite
 original procedure
 return address

4. New return address
 points to data in
 buffer, which are
 viral CPU instructions

 5. CPU instructions in
 buffer trigger execution
 of viral code

BUFFER

LOCAL
VARIABLES

RETURN
ADDRESS

INPUT DATA

In 1989, the so-called Morris Worm, created by Cornell University graduate student,
Robert T. Morris, used a buffer overflow vulnerability in a UNIX program to invade and
shut down much of the Internet. It was the first worm of its kind to become a household
name, and, by some accounts, brought the destructive potential of the buffer overflow to
the attention to the computer community.73

3. LIABILITY ISSUES IN BLENDED ATTACKS

3.1 Negligence concepts

73 Takanen et al., Running Malicious Code By Buffer Overflows: A Survey of Publicly Available Exploits,
162. EICAR 2000 Best Paper Proceedings. ("The day when the world finally acknowledged the risk
entailed in overflow vulnerabilities and started coordinating a response to them was the day when the
Internet Worm was introduced, spread and brought the Internet to its knees.") Available at
http://www.papers.weburb.dk.

Introduction

A civil action involving a blended attack would most likely be pursued under a
negligence theory, the most widely used theory of liability in the law of torts.74
 Negligence is generally defined as a breach of the duty not to impose an
unreasonable risk on society.75 It applies to any risk that can be characterized as
unreasonable, including the risks associated with malevolent software. A victim of a
blended attack may therefore bring legal action under a negligence theory against anyone
who contributed to the risks associated with the attack, as well as those who failed in
their duty to reduce or eliminate the risk.76
 Blended threats are diverse, but they have two main characteristics in common,
namely (i) exploitation of security vulnerabilities, and (ii) malevolent code with multiple
destructive properties. This suggests the most likely defendants in a blended attack,
namely (i) the original tortfeasor responsible for the security flaw, usually a solvent
commercial vendor, and (ii) the virus distributor, the intervening party who programmed
and distributed the virus or worm to exploit the vulnerability. The virus distributor is in
practice often judgment-proof and shielded by the anonymity of cyberspace. The liability
of the original tortfeasor is therefore likely of greater interest to a prospective plaintiff.
 The plaintiff in a negligence action has to prove the following elements to
establish her claim.

1. A legal duty on the part of the defendant not to expose the plaintiff to unreasonable
risks.

2. A breach of the duty, namely a failure on the part of the defendant to conform to the
norm of reasonableness.

3. A causal connection between defendant's conduct and plaintiff's harm. This element
includes actual as well as proximate cause. Defendant's negligence is the actual cause

74 See, e.g., James A. Henderson, Why Negligence Law Dominates Tort, 50 UCLA L. REV. 377 (2003).
See, also, Gary T. Schwartz, The Vitality of Negligence and the Ethics of Strict Liability, 15 GA. L. REV.
963 (1981); Gary T. Schwartz, The Beginning and the Possible End of Modern American Tort Law, 26 GA.
L. REV. 601 (1992).

75 PROSSER AND KEETON ON THE LAW OF TORTS (5th ed., West Publ. Co., 1984), § 31. Second
Restatement of Torts, § 282 (Describing negligence as conduct "which falls below the standard established
by law for the protection of others against unreasonable risk of harm.")

76 Dan B. Dobbs, The Law of Torts, at 258 (The plaintiff can assert that any conduct counts as
negligence.)

of the plaintiff's harm if, but for the negligence, the harm would not have occurred.
Proximate causation means that the defendant's conduct must be reasonably closely
related to the plaintiff's harm.

4. Actual damage resulting from the defendant's negligence.

Generally, a duty exists (i) where someone sells a product; (ii) where someone has
committed an affirmative act; (iii) when a special relationship exists; (iv) when a special
kind of contract exists that benefits the plaintiff; and (v) where there is an undertaking by
the defendant. Duty is also not an impediment to the plaintiff when a defendant has acted
maliciously to destroy property.77

 Courts require a plaintiff to prove breach of duty by identifying an untaken
precaution that would have prevented the harm, and showing that the untaken precaution
would have yielded greater benefits in accident reduction than its cost. The issue of
breach in the context of a blended attack is discussed and analyzed in section 4.3
("Encouragement of free radicals must be negligent.") The issue of damages in a virus
context, including the economic loss rule, has been analyzed in related articles.78

 We now turn to proximate causality, which is the most complex and interesting
liability issue in blended attacks.

3.2 Proximate causality

Proximate cause applies to two broad categories of cases, namely those involving (i)
multiple risks, and (ii) concurrent efficient causes.79 A Multiple Risks case typically
involves two risks, both of which would have been reduced by the defendant's untaken
precaution. The first is the primary risk, which was clearly foreseeable to a reasonable
person, and the second an ancillary risk, which would not have been reasonably
foreseeable. Suppose, for instance, a surgeon performs a vasectomy negligently, and a
child is born. The child grows up and sets fire to a house. The owner of the house sues
the doctor for negligence. This is clearly a multiple risks case. The primary risk consists

77 Mark F. Grady and A. Farnsworth, TORTS: CASES AND QUESTIONS (2004).

78 Meiring de Villiers, Computer Viruses and Civil Liability: A Conceptual Framework, TORT AND
INSURANCE PRACTICE LAW JOURNAL Fall 2004 (40:1); Meiring de Villiers,Virus ex Machina Res Ipsa
Loquitur, 1 STANFORD TECH. L. REV., 2003.

79 Mark F. Grady, Proximate Cause Decoded, 50 UCLA L. REV. 293, 296 (2002) ("Proximate cause is a
dualism.")

of foreseeable medical complications due to the incompetent vasectomy, including an
unwanted pregnancy. The ancillary risk is the (unforeseeable) risk that the conceived
child may grow up to be a criminal.80 The proximate cause issue is whether the defendant
should be held liable for the harm due to the ancillary risk.
 A Concurrent Efficient Causes case involves multiple causes, all of which are
actual causes of the same harm.81 In a typical Concurrent Efficient Causes case an
original wrongdoer and a subsequent intervening party are both responsible for the
plaintiff's harm. Suppose, for instance, a technician negligently fails to fasten the wheels
of plaintiff's car properly. A wheel comes off, leaving the plaintiff stranded on a busy
highway. The stranded plaintiff is subsequently struck by a passing driver who failed to
pay attention. The technician and the inattentive driver were both negligent and are
concurrent efficient causes of the plaintiff's harm. The proximate cause issue is whether
the second tortfeasor's intervening act should cut off the liability of the first. We now
show that proximate cause is analyzed best when viewed as a dualism, consisting of two
separate doctrines.

Proximate cause as a dualism

Proximate cause is a dualism consisting of two separate doctrines or tests. One doctrine
applies to Multiple Risks cases, and the other to Concurrent Efficient Causes cases. Some
accidents involve purely multiple risks, while others involve purely concurrent causes. In
some cases, however, both doctrines apply. When both situations, Multiple Risks as well
as Concurrent Efficient Causes, are present in the same case, both proximate cause
doctrines apply and the requirements for both have to be satisfied for proximate cause to
exist.82

 The Reasonable Foresight doctrine applies to cases of multiple risks, where a
primary and ancillary risk both caused the plaintiff's harm. This doctrine establishes the
conditions under which the tortfeasor who created the primary risk will he liable for
actual harm that has resulted from the ancillary risk. The bungled vasectomy is a typical
Reasonable Foresight case. The Reasonable Foresight doctrine determines whether the

80 Based on hypothetical in Dan B. Dobbs, The Law of Torts, p. 444.

81 Mark F. Grady, Proximate Cause Decoded, 50 UCLA L. REV. 293, 299 (2002).

82 Mark F. Grady, Proximate Cause Decoded, 50 UCLA L. REV. 293, 298 (2002).

surgeon would be held liable for damage caused by the ancillary risk, namely the risk that
an unwanted pregnancy may produce a future criminal.
 The Direct Consequences doctrine of proximate cause applies to cases involving
multiple efficient causes. The doctrine examines concurrent causes to determine whether
the person responsible for the second cause has cut off the liability of the person
responsible for the first cause. The "loose wheel" case is a typical Direct Consequences
case. The Direct Consequences doctrine would determine whether the intervening
tortfeasor (the inattentive driver who struck the stranded plaintiff) would cut off the
liability of the original tortfeasor (the negligent automobile technician.)
 The Direct Consequences doctrine applies to blended attacks. A blended attack
has two efficient causes, namely the security vulnerability and the virus distributor who
exploited the vulnerability to launch the attack. The vulnerability and the intervening
hacker are both essential to, and but-for causes of, the attack. Fast-spreading worms, such
as CodeRed or Nimda, could not infect a system without an exploitable vulnerability. A
system without the vulnerability or with an effective patch properly installed, would be
immune to these worms.83
 In the proximate cause analysis of a blended attack, the buffer overflow
vulnerability is the original cause for which one of the defendants, the software designer,
is responsible. Subsequently, an intervening defendant committed a second tort, namely
transmitting a virus programmed to exploit the vulnerability. The second tort is a possible
supervening tort which may cut off the liability of the first tortfeasor.
 The direct consequences doctrine of proximate cause determines when the second
concurrent efficient cause, the virus distributor, would cut off the liability of the person
responsible for the first, the buffer overflow vulnerability. The liability of the virus
distributor is not an issue, as she will always be liable, as long as the elements of duty,
breach and actual causation are satisfied. However, a plaintiff would usually be more
interested in suing the solvent original tortfeasor, rather than the judgment-proof hacker.
 Analysis of the Direct Consequences doctrine is simplified if we break it down
into five mutually exclusive paradigms. If a case falls clearly within one of the
paradigms, its proximate cause analysis is normally straightforward.

Paradigms in Direct Consequences doctrine

83 Peter Szor, THE ART OF COMPUTER VIRUS RESEARCH AND DEFENSE (2005), at 98.

Any direct consequences case belongs to one of five mutually exclusive paradigms,
namely (i) No Intervening Tort, (ii) Encourage Free Radicals, (iii) Dependent
Compliance Error, (iv) No Corrective Precaution, and (v) Independent Intervening
Tort.84

 The No Intervening Tort paradigm is the default paradigm. It preserves proximate
cause if no tort by anyone else has intervened between the original defendant's
negligence and the plaintiff's harm, as long as the type of harm was foreseeable. In this
paradigm the original tortfeasor is not only the direct cause of the harm, but also the only
wrongdoer. A speeding and unobservant driver who strikes a pedestrian walking
carefully in a crosswalk is a clear example of a case within the No Intervening Tort
paradigm. The original wrongdoer is clearly liable under this paradigm, and is also the
only wrongdoer. A blended attack does not fit into this paradigm because of the
intervening tort of a second wrongdoer, the cyber attacker.
 Under the Encourage Free Radicals (EFR) paradigm, proximate cause is
preserved if the defendant's wrongdoing created a tempting opportunity for free radicals.
Proximate cause is preserved under the Dependent Compliance Error (DCE) paradigm if
the defendant's wrongdoing has increased the likelihood that the victim will be harmed
by someone else's inadvertent negligence. A blended attack would not fall into the DCE
paradigm if the second wrongdoer acted intentionally.
 Proximate cause is broken under the No Corrective Precaution paradigm if a third
party with an opportunity and duty to prevent the plaintiff's harm, intentionally fails to do
so. If, for instance, the plaintiff intentionally fails to take a corrective precaution that
would have prevented the harm, such failure would cut off the original tortfeasor's
liability.
 As the name suggests, the Independent Intervening Tort paradigm cuts off the
original tortfeasor's liability if an independent intervening tort caused the plaintiff's harm.
Under this paradigm the original tortfeasor's liability will be cut off if the relation
between the original tortfeasor's negligence and the second defendant's subsequent
negligence is coincidental.
 The victim of a blended attack, as plaintiff in a negligence action, would be
interested in preserving the liability of a solvent original tortfeasor. There are three direct
consequences paradigms which, if applicable, may preserve the liability of the original
tortfeasor. The paradigms are the No Intervening Tort (NIT), Dependent Compliance
Error (DCE) and EFR paradigms. The NIT and DCE paradigms do not apply to the

84 Mark F. Grady, Proximate Cause Decoded, 50 UCLA L. REV. 293, 301-321 (2002).

typical blended attack case, which leaves the EFR doctrine. The EFR doctrine would
preserve the liability of an original tortfeasor if she encouraged free radicals, and if the
factors that influence courts in holding a defendant liable for encouraging free radicals
are present in the case. If, however, the second tortfeasor is a responsible person who
deliberately omitted a reasonable precaution or committed an intentional tort or crime,
the original tortfeasor's liability will be cut off.
 The Encourage Free Radicals paradigm, to which we now turn, is therefore the
most relevant paradigm in the liability analysis of a blended cyber attack.

3.3 The Encourage Free Radicals Doctrine

Introduction

Courts hold rational and "irrational" defendants equally liable for their torts. Actors with
a severe mental illness, for instance, are not exempted from liability. Mentally
incompetent people are held to the standard of normal people, even though they could
never achieve it. In Polamtier v Russ,85 for instance, a legally insane paranoid
schizophrenic defendant was held liable for shooting his father-in-law. The court
reasoned that, in spite of his mental illness, he could nevertheless form the intent to
commit his unlawful act.86

 We observe the same pattern in negligence law. People with mental illnesses are
held to the negligence standards of normal people. In Breuning v American Family
Insurance Co.,87 a person started experiencing delusions, but continued driving her car
and caused an accident. The court reasoned that a reasonable person should have seen the
delusions as a danger signal, and that continuing to drive therefore constituted
negligence.
 The courts do distinguish between rational and irrational actors when they are
encouraged by a rational defendant. Courts hold a rational defendant liable for
encouraging or provoking an irrational person, but cuts off the encourager's liability

85 537 A.2d 468 (Ct. 1988).

86 Mark F. Grady, The Free Radicals of Tort. See, also, McGuire v Almy, 8 N.E.2d 760 (Mass. 1937)
("[W]here an insane person by his act does intentional damage to the person or property of another he is
liable for that damage in the same cirucmstances in which a normal person would be liable."); Ellis v
D'Angelo, 253 P.2d 675 (1953) (Child held liable on grounds that he could predict the consequences of his
tortious act.)

87 173 N.W.2d 619 (Wis. 1970).

when the provoked actor is rational. The rationale for this distinction appears to be rooted
in the deterrence and insurance goals of tort law.
 Negligence law is the most basic form of safety regulation, but it is an ineffective
deterrent against defendants who are shielded from liability by anonymity, insufficient
assets, lack of mental capacity or lack of good judgment. Such trouble-prone individuals
are termed "free radicals," because of their tendency to bond with trouble. Examples of
free radicals include children, anonymous crowds, criminals, mentally incompetent
individuals, and in the cyber realm, hackers and cyber rogues, such as computer virus
authors and distributors.88
 Free radicals are not deterred by the threat of tort liability. Judgment-proof free
radicals have insufficient assets to pay for the harms they cause, while other free radicals
simply lack the good judgment or mental capacity to to care about the consequences of
their actions.89 Terrorists may be blinded to the threat of liability by ideological or
religious motivations. The deterrence rationale of negligence law would therefore be
defeated if responsible people who foreseeably encourage free radicals to be negligent
were allowed to escape judgment by shifting liability to the latter. Common law
negligence rules have responded to this policy dilemma with the Encourage Free
Radicals (EFR) doctrine. The EFR doctrine imposes liability on the encourager, even
when intentional or criminal behavior by a free radical intervenes.90
 Satcher v James H. Drew Shows, Inc.91 illustrates the Free Radicals paradigm. In
Satcher, the plaintiff bought a ticket for a ride on the bumper cars in an amusement park.
A group of mental patients on an excursion joined the plaintiff's group. When the ride
started, the patients converged on the defendant and repeatedly crashed into her from all
angles, injuring her neck permanently. The plaintiff filed suit, alleging that the defendant
owner and operator of the ride had been negligent in allowing the patients to target and

88 Mark F. Grady, Proximate Cause Decoded, 50 UCLA L. REV. 293, 306-312 (2002).

89 The effects of the judgment-proof problem on the deterrence and insurance goals of torts are discussed
in the following references: Steven Shavell, The Judgment Proof Problem, 6 INT'L REV. LAW & ECON,
45 (1986); Henry Hansmann and Reinier Kraakman, Toward Unlimited Shareholder Liability for
Corporate Torts, 100 Yale L J 1879, 1882-83; John G. Fleming, Report to the Joint Committee of the
California Legislature on Tort Liability of the Problems Associated with American Motorcycle Association
v Superior Court, 30 Hastings L J 1465, 1470 (1979); William R. Keeton and Evan Kwerel, Externalities
in Automobile Insurance and the Underinsured Driver Problem, 27 J Law & Econ 149, 149-50 (1984);
John Summers, Comment, The Case of the Disappearing Defendant: An Economic Analysis, 132 U Pa L
Rev, 145, 145 (1983).

90 Mark F. Grady, Proximate Cause Decoded, 50 UCLA L. REV. 293, 308 (2002).

91 177 S.E.2d 846 (Ga. Ct. App. 1970).

injure her. The appellate court reversed the trial court's decision for the defendant, on the
grounds that the defendant had encouraged free radicals.
 If the plaintiff had sued the mental patients she likely would have won. Their
mental illness would not have been a defense, although they may not have had the assets
to pay a judgment. Their mental illness is a critical factor in the liability of the owner of
the defendants. If the bumper car drivers were rational individuals, instead of free
radicals, the defendant would probably not have been held liable. Tort law focuses
liability on responsible people, which is where its policy goals will be best promoted.
 Another free radicals case is presented by Weirum v RKO General, Inc.92 The
defendant radio station broadcast a contest in which a disk jockey would drive
throughout Los Angeles. He would stop occasionally and announce his location on the
radio. Teenagers would race to meet the disk jockey and he would give a prize to the first
one who reached him. Eventually, two overeager racing teenagers were involved in a
road accident, killing the plaintiff's deceased. There were two concurrent efficient causes
of the accident, namely the organizers of the contest and the reckless teenage drivers. The
radio station negligently encouraged the free radical teenagers to drive recklessly. The
wrongdoing of the teenagers did therefore not cut off the defendant radio station's
liability. The radio station was held jointly liable with the teens and, as the deeper pocket,
likely paid most of the damages.

Historical review of the EFR doctrine

The EFR doctrine is not a modern development, but has a long history. The doctrine
developed a critical mass throughout the nineteenth century, as did negligence cases
generally.
 One of the earliest cases in which a court applied the EFR doctrine is the 1773
English case, Scott v Shepherd.93 The defendant threw a lighted squib, made of
gunpowder, into a crowded marketplace. The squib was picked up and thrown away
successively by several people, until it landed elsewhere in the market where it exploded
and injured the plaintiff. The verdict turned on whether the harm was direct (trespass vi et
armis) or consequential (trespass on the case.)

92 539 P.2d 36 (Cal. 1975).

93 96 Eng. Rep. 525 (K.B. 1773).

 If the original throwers had acted out of self-defense or necessity, the harm would
be considered to have been a direct consequence of the defendant's first throw of the
squib. If the intermediate throwers, on the other hand, had acted to "continue the sport" as
true free radicals would, then the harm would be consequential or indirect. Justice
Blackstone argued for the free radical interpretation, but was outvoted by his colleagues.
The court held for the plaintiff, because he had decided to plead trespass vi et armis.
 The English case, Dixon v Bell,94 may have been the original EFR case.95 The
defendant sent his thirteen-year old servant to fetch a loaded gun he had kept in his
apartment. Assuming the gun was unloaded, the servant playfully pointed it at the
plaintiff's son and pulled the trigger. The gun went off, injuring the boy. The plaintiff's
declaration based its claim of liability on the allegation that the defendant had
encouraged a free radical. In particular, the allegation claimed that the defendant had
wrongfully sent a juvenile servant to fetch a loaded gun, fully aware that it was
inappropriate and dangerous.
 Lynch v Nurdin96 was decided in 1841, in the full swing of the Industrial
Revolution. The defendant had left his horse and cart unattended on a street that was
usually thronged. On this day, the street was even busier than usual. The defendant knew
that groups of children would be coming down the street and that they would be
interested in his horse and cart. The plaintiff, a young child, was injured when another
boy, who was playing on the cart, caused it to move and run across the plaintiff's leg. The
Queen's Bench held the defendant liable for providing an opportunity and encouragement
to free radicals.97
 Guille v Swan98 was possibly the original EFR case in the United States. In
Guille, the defendant descended in a balloon over New York City into plaintiff's garden
in a manner that attracted a crowd. The defendant's balloon dragged over the plaintiff's
garden, but the crowd did much more damage to the garden. The defendant argued that
he should be responsible only for his share of the damages, and not for that caused by the

94 105 Eng. Rep. 1023 (K.B. 1816).

95 Mark F. Grady, The Free Radicals of Tort, at 113 ("[I]n 1816, the English Court of King's Bench had
already decided the first indisputable EFR case, which was Dixon v Bell."]

96 113 Eng. Rep. 1041 (Q.B. 1841).

97 See, also, Lane v Atlantic Works, 111 Mass. 136 (1872) (Defendant held liable for encouraging free
radicals when carelessly laid iron bars fell off when jostled by a child, and injured the plaintiff.)

98 19 Johns. 381 (N.Y. 1822).

crowd, but the court held him responsible for all the damages. The crowd were free
radicals in that particular situation. People who are otherwise perfectly rational may
behave differently when they are shielded by the anonymity and diminished
accountability of a crowd. Chief Justice Spencer stated that the defendant's manner of
descent would foreseeably draw a crowd with predictable consequences, for which he
should be held responsible, a classic description of the EFR doctrine.99

4. FREE RADICALS, THE BUFFER OVERFLOW AND BLENDED ATTACKS

4.1 Introduction

In a negligence action, liability of an original tortfeasor for encouraging a second
tortfeasor will be preserved under the EFR doctrine, if (i) the second tortfeasor is in fact a
free radical, and (ii) the case exhibits the factors that influence courts in holding a
defendant liable for encouraging free radicals. We now turn our analysis to these two
issues in the context of a blended attack.
 The EFR doctrine only applies when a free radical is involved. If the encouraged
person is not a free radical, and if the defendant's encouragement is insufficient to make
him a co-actor with the immediate wrongdoer, the defendant is immune to liability. A
defendant would, for instance, not be held liable for encouraging a responsible citizen. If
Bill Gates had responded to the Weirum radio broadcast by racing to collect the prize, his
intervening conduct would almost certainly have cut off the radio station's liability.100
Likewise, in the unlikely event that Bill Gates would use a virus kit to create a virus that
exploits a security flaw in Windows, the creator of the kit would escape liability. If,
however, a free radical, such as a judgment-proof hacker did the same, proximate
causality would likely not be broken by the hacker's intervention.
 Seith v Commonwealth Electric Co.101 presents a case where a non-free radical
intervened, cutting off the liability of the defendant. In Seith, because of negligent
maintenance, a live electric wire broke and fell on a sidewalk. Two police officers came
to investigate and one of them flipped the wire with his club towards the plaintiff, a
bystander. The plaintiff caught it reflexively, and suffere a severe electric shock. The trial

99 Mark F. Grady, The Free Radicals of Tort, at 113.

100 Weirum v RKO General, Inc, 539 P.2d 36 (Cal. 1975).

101 89 N.E. 425 (Ill. 1909).

court found for the plaintiff, but the Illinois Supreme Court reversed on the grounds that
the police officer, as a model of propriety and responsibility, was not a free radical. If a
free radical, such as a child or mentally incompetent person had flipped the wire to the
plaintiff, the defendant would likely have been held liable.102
 The second tortfeasors in a blended attack are typically virus authors and
distributors who have exploited a security vulnerability to launch a cyber attack. The
liability of the original tortfeasor will be preserved if the exploiters of the vulnerability
are free radicals. We now turn to an analysis of virus authors and distributors as free
radicals.

4.2 Virus authors and distributors as free radicals

Virus authors and distributors have properties commonly associated with free radicals.
They are often judgment-proof and shielded by the anonymity of cyberspace.
Furthermore, virus attacks are under-reported, under-prosecuted and the probability of
catching a hacker or virus author is comparatively low. Virus authors appear undeterred
by the threat of legal liability and often seem unconcerned about the problems caused by
their creations. Most virus authors would either be unaffected or, perversely, actually
encouraged by stricter anti-virus legislation. All these factors are consistent with a free
radical profile.103

Anonymity

102 Travell v Bannerman, 75 N.Y.S. 866 (App. Div. 1902) presents an analogous situation, where the harm
was caused by an intervening free radical. (Children played with discarded explosive material, causing
injury.)

103 Paul A. Strassman and William Marlow, Risk-Free Access Into the Global Information Infrastructure
Via Anonymous Re-Mailers, Symposium on the Global Information Infrastructure: Information, Policy &
Information Infrastructure, Cambridge, MA, January 28-30, 1996 ("Information terrorism ... is a unique
phenomenon in the history of warfare and crime. For the last two hundred years the theory of warfare has
been guided by 'force-exchange' equations in which the outcome was determined by the rate of attrition of
each opposing force. In information attacks these equations do not apply because the attacker remains
hidden and cannot be retaliated against. Since Biblical times, crimes have been deterred by the prospects of
punishment. For that, the criminal had to be apprehended. Yet information crimes have the unique
characteristic that apprehension is impossible, since even identification of the criminal is not feasible.
Information crimes can be committed easily without leaving any telltale evidence such as fingerprints,
traces of poison or bullets.")

The Internet provides users with a degree of anonymity which has emboldened
cybercriminals to commit crimes they would not otherwise consider.104 The anonymity of
cyberspace complicates the task of detecting computer crimes and tracking down
offenders. It also makes it harder to obtain evidence against a wrongdoer such as a virus
author or distributor.105 Cyberspace provides the technology and opportunity to a skilled
operator to assume different identities, erase his digital footprints, and transfer
incriminating evidence electronically to innocent computers, often without leaving a
trace.106
 Suppose, for instance, a virus were transmitted from the e-mail account of
someone named Jill Smith, and a copy of an identical virus were tracked down in the
same account. This evidence may look like the proverbial smoking gun, but would likely
not prove by a preponderance that the owner of the account is the actual culprit. Someone
may have hacked into the Smith account, used it to launch a virus and stored
incriminating files in the account.107 Perpetrators of denial of service (DoS) attacks
employ similar tactics to hide their identities. The most common form of distributed

104 Mark D. Rasch, Criminal Law and the Internet, Chapter 11 in The Internet and Business: A Lawyer's
Guide to the Emerging Legal Issues. Available on-line at http://www.cla.org/RuhBook/chp11.htm. (The
anonymity of cyberspace encourages network users to commit offenses that they would not otherwise
attempt. This is exacerbated by the fact that the bounds of acceptable behavior is not yet clearly defined in
cyberspace.)

105 Sarah Gordon, Virus Writers: The End of Innocence ("[T]racing a virus author is extremely difficult if
the virus writer takes adequate precautions against a possible investigation."); Ian C. Ballon, Alternative
Corporate Responses to Internet Data Theft, 471 PLI/Pat. 737, 739 (1997); M. Calkins, They Shoot Trojan
Horses, Don't They? An Economic Analysis of Anti-Hacking Regulatory Models, 89 GEO. L.J. 171,
November 2000; Jelena Mirkovic et al, INTERNET DENIAL OF SERVICE: ATTACK AND DEFENSE
MECHANISMS (2005), 14 ([V]ery few attackers have been caught and prosecuted. ... [One] factor is the
ease of performing a DoS attack without leaving many traces for investigators to follow. ... Another type of
DoS perpetrator is a sophisticated hacker who uses several means to obscure her identity and create subtle
variations in traffic patterns to bypass defenses.")

106 See, e.g., Ted Bridis, Microsoft Offers Huge Cash Rewards for Catching Virus Writers, at
http://www.securityfocus.com/news/7371. ("Police around the world have been frustrated in their efforts to
trace some of the most damaging attacks across the Internet. Hackers easily can erase their digital
footprints, crisscross electronic borders and falsify trails to point at innocent computers.")

107 M.D. Rasch, Criminal Law and the Internet, Chapter 11 in The Internet and Business: A Lawyer's
Guide to the Emerging Legal Issues (Computer Law Association). On-line version available at
http://www.cla.org/RuhBook/chp11.htm. See, also, BizReport News, September 12, 2003 ("There are
many ways for virus writers to disguise themselves, including spreading the programs through unwittingly
infected e-mail accounts. The anonymity of the Internet allows you to use any vulnerable machine to
launder your identity.") Report available at http://www.bizreport.com/print.php?art_id=4917.

denial of service attack108 consists of flooding a network with bogus information packets,
thereby preventing legitimate network traffic. The source addresses of this illegitimate
network traffic is usually spoofed to hide the true origin of the attack, making it difficult
to identify the attacker. This is especially true with distributed attacks.109

 As the number of machines connected to the Internet increases, the ability of
hackers to elude detection is enhanced. Subverting multiple machines makes it difficult
to trace the source of an attack. An attacker can take a circuitous route and hide his tracks
in the adulterated log files of multiple machines, which would reduce the likelihood of
detection and allow the attacker to remain hidden from law enforcement.110
 The anonymity of cyberspace has contributed to virus authors' graduation from
cyber-vandalism to organized crime. Virus writers are increasingly cooperating with
spammers and hackers to create viruses to hack into computers to steal confidential
information, often hiding their identity by spoofing the identity of the legitimate owner.
Spammers are using viruses, for instance, to mass distribute junk mail, by sending out
viruses to take over computers and email accounts and using them to mass-distribute
spam messages.111 The owner of the hijacked computer usually does not know it has
been hijacked, although there are often subtle indications, such as slower Internet
connection.112

108 A denial-of-service attack (also, DoS attack) is an attack on a computer system or network that causes a
loss of service to users, typically the loss of network connectivity and services by consuming the
bandwidth of the victim network or overloading the computational resources of the victim system.

109 See, e.g., Rik Farrow, Distributed Denial of Service Attacks (DDoS) ("In an ordinary network-based
denial of service attack, an attacker uses a tool to send packets to the target system. These packets are
designed to disable or overwhelm the target system, often forcing a reboot. Often the source address of
these packets is spoofed, making it difficult to locate the real source of the attack.")

110 L. Jean Camp and Catherine Wolfram, Pricing Security, in L. Jean Camp and Stephen Lewis (eds.),
ECONOMICS OF INFORMATION SECURITY (2004).

111 The virus named "Sobig F," for instance, is programmed to turn a computer into a host which sends out
spam e-mail messages, often without the knowledge of the owner. It is widely believed that half a million
copies of the virus named AVF were sent by a spammer. Unlike Melissa, the AVF virus does not mail
copies of itself out to everyone in the infected computer's address book. Instead, AVF makes the infected
computer an intermediary, by opening a backdoor in the infected machine through which spammers can
distribute their junk mail.

112 Spam Virus Hijacks Computers, BBC News,
at http://news.bbc.co.uk/1/hi/technology/3172967.stm; Jo Twist, Why People Write Computer Viruses,
BBC News. http://news.bbc.co.uk/1/hi/technology/3172967.stm. See, also, Chen and Robert, The
Evolution of Viruses and Worms, at 14 ("[A] sociological reason [for continued pervasiveness of worms
and viruses] is the lack of accountability for worm writers. The long-held general perception has been that
worms and viruses are low risk crimes. It is notoriously difficult to trace a virus or worm to its creator from
analysis of the code, unless there are inadvertent clues left in the code.")

Role of e-mail

E-mail plays a prominent role in computer security. E-mail is currently the most widely
used mechanism for virus transmission,113 as well as a prime means to install backdoors
and other malicious programs in target systems.114 E-mail is a popular mechanism for
transmitting viruses embedded in Word macros (such as Melissa), infected attachments
(such as Love Bug), and viruses embedded in HTML mail. Technology that enables
anonymous e-mail transmission would therefore be a significant tool in the hands of
cyber rogues.
 E-mail anonymity is substantially enhanced by the use of anonymous remailers.
Remailers are servers which forward electronic mail to network addresses on behalf of an
original sender who wishes to remain anonymous. An e-mail message usually carries a
header with information about its starting point, its destination and some information
about the route it has taken. This information makes the true source of the message
traceable. The purpose of a remailer service is to disguise the true source by delivering an
e-mail message without its original header and with a fictitious return address. This
ensures almost total anonymity for the original sender.115
 The remailer typically receives a message from A, intended to be transmitted to
B. The remailer then transmits the message to B, but in such a way that the true source

113 ICSA Labs 9th Annual Computer Virus Prevalence Survey 2003, at 15. (Showing e-mail attachments,
as a source of infection, increasing from 9 percent in 1996, to 88 percent in 2003. In contrast, infection by
diskette has decreased from 70 percent in 1996, to virtually zero in 2003.)

114 See, e.g., Why Anti-Virus Software is Not Enough: The Urgent Need for Server-Based Email Content
Checking (April 23, 2003). Available at http://www.secinf.net/anti_virus/
See, also, Lynne Munro, Protecting Your Computer from e-Mail viruses and Worms, Oxford University
Computing Services White Paper (November 2001, revised January 2004), at 1 ("currently you are more
likely to infect your computer with a virus/worm by reading an infected e-mail message than by any other
route.") Available at http://www.oucs.ox.ac.uk/viruses/avdocs/emailvirs/index.xml?style=text.

115 Spammers and Viruses Unite, BBC News, at http://news.bbc.co.uk/1/hi/technology/2988209.stm.
(Describing the hijacking program named Proxy-Guzu, which would typically arrive as a spam message
with an attachment. Opening the attachment triggers it to forward information about the hijacked account
to a Hotmail account. This information then enables a would-be spammer to route mail through the
hijacked computer. The source of this spam would be very hard if not impossible to trace, especially if the
spammer and the sender of the hijacking program employed anonymity-preserving techniques, such as a
remailer.)
 See, also, Jay Lyman, Authorities Investigate Romanian Virus Writer, at
http://www.linuxinsider.com/perl/story/31500.html, referring to "the difficulty of tracking down virus
writers, particularly when they are skilled enough to cover their digital tracks, [so that] few offenders are
ever caught."; Noah Levine, Note: Establishing Legal Accountability for Anonymous Communication in
Cyberspace, 96 COLUM. L. REV. 1526, Section I.A.

(A) is obfuscated.116 Some remailer services enable the recipient to reply to the true
source, but without revealing the identity of the source. A virus may be circulated
anonymously in this manner, by remailing an e-mail message with an attachment
containing the virus.117

 Remailers come in different varieties and levels of anonymity.118 Some remailers
maintain an internal list of the true identities of their clients. Any client of the remailer is
in principle identifiable by someone with access to the internal master list. The former
anonymous remailer, penet.fi, operated in this way, which ultimately led to its demise
when a court ordered that the client list be made available to a plaintiff in a lawsuit.
Pseudonymous remailers, generally termed nym servers, use cryptography to provide the
same service but with a greater degree of confidentiality.
 The purpose of keeping a list of client identities is to facilitate two-way
interaction. When the remailer receives a message intended for one of its clients, the
remailer consults the list and forwards the message to the client. If e-mail users are
willing to forego two-way interaction, such a master list is no longer necessary and
greater confidentiality can be achieved. When a message is remailed anonymously under
such an arrangement, it leaves no information behind that can be used to trace it to the
original sender. A determined sender can use "chained remailing" as an additional line of
defense, namely a combination of anonymous remailers and encryption techniques, to
make it virtually impossible to trace her communications.
 Remailers fulfill an important function in attacks that rely on e-mail as
propagation mechanism, as is often the case in blended attacks. A buffer overflow
vulnerability in the e-mail servers Microsoft Outlook and Outlook Express, for instance,
enabled an attacker to invade a target computer by sending an infected e-mail message.
The malicious code could be executed merely by reading the transmitted HTML
message, without opening an attachment. As soon as the recipient downloaded the

116 A remailed message may still be traceable if, for instance, the anonymous remailer administrators keep
a log of the identities of their clients. Not all remailers keep such information, though. See, e.g., Noah
Levine, supra, at nn. 24-28.

117 See, e.g., Noah Levine, Note: Establishing Legal Accountability for Anonymous Communication in
Cyberspace, 96 COLUM. L. REV. 1526, at n. 50.

118 See, e.g., Anonymous Remailer, at http://en.wikipedia.org/wiki/Anonymous_remailer ("An anonymous
remailer is a server computer which receives messages with embedded instructions on where to send them
next, and which forwards them without revealing where they originally came from. There are Cypherpunk
anonymous remailers, Mixmaster anonymous remailers, and nym servers, among others, which differ in
how they work, in the policies they adopt, and in the type of attack on anonymity of email they can (are
intended to) resist.")

infected message from the server, Outlook would crash and the viral code activated. The
infected e-mail message would then be sent to all contacts in the address book of the
victim. The process would repeat itself, repeatedly causing e-mail clients to crash, and
occasionally ending up paralyzing Internet traffic.119
 Anonymous e-mail would protect and encourage the perpetrators of this exploit
and countless others. The anonymity provided by remailing drastically reduces
accountability and deterrence on the Internet, and is increasingly a hindrance to law
enforcement efforts.120

Lack of deterrability

Perpetrators of virus attacks appear to be undeterred by the threat of legal action. In a
leading study on the subject, Dr. Sarah Gordon examined the correlation between the
number of new viruses in the wild and high profile prosecutions of virus authors, as a
measure of the deterrence value of prosecution. Dr. Gordon reports that high profile
prosecutions have had a limited deterrent effect.121
 Dr. Gordon's conclusions were corroborated by a survey by the same author, in
which virus authors and anti-virus researchers were asked whether the arrest and
prospective sentencing of the Melissa author would have any impact on the virus writing

119 Microsoft has since created a patch to fix this vulnerability. See details of vulnerability in Microsoft
advisory VU#842160. The malicious code is commonly referred to as MyDoom{AG, AH, AI} or Bofra.
When a user clicked on a malicious e-mail message, Internet Explorer opens and displays an HTML
document that exploits the vulnerability to execute the virus. For details, see University of Cambridge,
Technical User Support Computing Service. http://www-tus.csx.cam.ac.uk/virus/alerts.html.

120 See, e.g., Robert Rossney, How to Keep Your ID a Secret on Usenet, S.F. CHRONICLE, Mar. 9, 1995,
at D3 ("Freed from accountability, people can and do issue all kinds of vileness and stupidity."); Noah
Levine, at 1537 ("In each case, anonymity serves to remove, or at least significantly decrease, the
deterrence effect of the law against civil or criminal violations."); Tal Z. Zarsky, Thinking Outside the Box:
Considering Transparency, Anonymity, and Pseudonymity as Overall Solutions to the Problems of Privacy
in the Internet Society, 58 U. MIAMI L. REV. 991, 1028 (Anonymity adversely affects society by by
causing the loss of accountability."); Paul A. Strassman and William Marlow, Risk-Free Access Into the
Global Information Infrastracture Via Anonymous Re-Mailers, Symposium on the Global Information
Infrastructure: Information, Policy & Information Infrastructure, Cambridge, MA, January 28-30, 1996
(The anonymous remailing service, anon.penet.fi., was frequently used by the Russian (ex-KGB) criminal
element. The "double-blind" method of communication it offered is favored for engaging services of
cybercriminals and for authorizing payments for criminal acts through a third party.)

121 Sarah Gordon, Virus Writers: The End of Innocence. (Finding no evidence that such prosecutions have
alleviated the virus problem, as measured by the rate of creation of new viruses in the wild subsequent to
high profile porosecutions.) See, also, R. Lemos (1999), 'Tis the Season for Computer Viruses.
http://www..zdnet.co.uk/news/1999/49/ns-12098.html. (It is well-known that even after the author of the
Melissa virus had been apprehended (and expected to be sentenced to a multi-year prison term), the
appearance of new viruses on the Internet continued to proliferate, and at an increasing rate.)

community. All virus authors interviewed stated that there would be no impact,
immediate or long-term, while the anti-virus researchers were evenly split between
whether the arrest would or would not have any impact. These results are consistent with
those of comparable surveys by other researchers.122
 The results of a subsequent survey on the impact of anti-virus legislation on virus
authors, suggest that new laws may, perversely, result in more viruses than before.
According to the survey results, a majority of virus authors would either be unaffected or
actually encouraged by anti-virus legislation. A significant number of the virus authors
interviewed claimed that criminalization of virus writing would actually encourage them
to create computer viruses, perhaps as a form of protest or civil disobedience.123

 Laws against virus authors cannot be effective unless virus incidents are reported
and perpetrators prosecuted There is evidence that virus crimes are seriously under-
reported and as a consequence, under-prosecuted.124 Companies tend to be reluctant to
report security breaches, such as virus attacks, perhaps to avoid negative publicity.125
Firms seem particularly reluctant to report and prosecute cybercrimes that originate from
overseas.126
 Commenting on the ineffectiveness of the law to combat computer viruses, Grable
writes, "[b]oth the federal and New York state criminal statutes aimed at virus terror are

122 Sarah Gordon, Virus Writers: The End of Innocence (Reference to a survey by A. Briney.)

123 Sarah Gordon, Virus Writers: The End of Innocence, reference to DefCon survey.

124 Sarah Gordon, Virus Writers: The End of Innocence. IBM White Paper,
http://www.research.ibm.com/antivirus/SciPapers/VB2000SG.htm. ("Minnesota statute §§ 609.87 to .89
presents an amendment which clearly defines a destructive computer program, and which designates a
maximum (prison term of) ten years; however, no cases have been reported. Should we conclude there are
no virus problems in Minnesota?) See, also, Michael K. Block Joseph G. Sidak, The Cost of Antitrust
Deterrence: Why not Hang a Price-Fixer Now and Then?, 68 GEO. L.J. 1131, 1131-32 (1980); Mitchell
and Banker, Private Intrusion Response, 11 HARV. J.L. & TECH. 699, 704; Andy McCue, IT Crime Still
Going Unreported, IT Week, 23 May 2002.
Available at: http://wwwinformaticsonline.co.uk/analysis/1132021. ("What we are seeing is an increase in
actual and attempted crimes using technology and particularly the Internet. The number of security
breaches reported is only the tip of the iceberg. For every one admitted there might be 100 held within
companies.")

125 Madeline Bennett, Crime Laws Lack Coherence, IT Week 20 May 2002 (citing Graham Cluley of anti-
virus firm, Sophos, "[t]o ensure that virus authors receive sentences that reflect the gravity of their
offenses, businesses should play their part. Viruses can cause great damage, yet businesses are ashamed to
report infections. They must take a two-pronged stance: improve protection on their systems and be
prepared to take action against the authors of malicious code.")

126 Andy McCue, IT Crime Still Going Unreported, IT Week, 23 May 2002 (Security consulting firm
reports that 90 percent of its client companies take no action when attack originates from overseas.)

ineffective because ... [t]he combination of the lack of reporting plus the inherent
difficulties in apprehending virus creators leads to the present situation: unseen and
unpunished virus originators doing their damages unencumbered and unafraid."127

 We conclude that virus authors have the deterrence-teflon properties commonly
associated with free radicals. They are often judgment-proof and shielded by the
anonymity of cyberspace, are increasingly motivated by crime, and appear unconcerned
about the problems caused by their creations. Currently, most virus and blended attacks
depend on e-mail. Such attacks are aided by numerous technologies that enable
anonymous e-mail transmission. Furthermore, virus attacks are under-reported, under-
prosecuted and virus authors, to a significant degree, appear to be unconcerned and,
perversely, often encouraged by the threat of legal liability and tougher laws.

4.3 EFR Factors

There are additional factors, besides the requirement that the second tortfeasor be a free
radical, that courts look at before they hold a primary tortfeasor liable for encouraging
free radicals. As a threshold requirement, the defendant's encouragement of free radicals
must have been negligent before liability will be imposed.

Encouragement of free radicals must be negligent

A defendant will not be held liable for encouraging free radicals unless the
encouragement was negligent. The encouragement must therefore have been a breach of
duty to the plaintiff. Courts require a plaintiff to prove breach of duty by identifying an
untaken precaution that would have prevented the harm, and showing that the untaken
precaution would have yielded greater benefits in accident reduction than its cost. The
CodeRed attack presents an illustrative example.
 The Windows IIS vulnerability that enabled the CodeRed attack sequence was
discovered on June 18, 2001.128 A security patch to fix the vulnerability was promptly

127 J. Grable, Treating Smallpox with Leeches: Criminal Culpability of Virus Writers and Better Ways to
Beat Them at Their Own Game. Computers & The Law Project. University of Buffalo School of Law. See,
also, Sarah Gordon, Virus Writers: The End of Innocence. ("[G]iven the small number of virus writers who
have been arrested and tried ... this lack of arrests is one of the primary indicators used by some to argue
that laws are not a good deterrent.")
 See, also, BizReport News, Virus Writers Difficult to Find in Cyberspace, September 2003.
(Reporting that it took 18 days to track down the author of the Blaster worm, even though the author left a
clear trail behind, including his alias stitched into the virus code, and references to a Web site registered in
his name.) Report available at http://www.bizreport.com/print.php?art_id=4917.

issued by Microsoft. The first version of CodeRed that exploited the vulnerability
appeared approximately one month later.129 Due to a programming flaw, the first version
of CodeRed did not spread as fast and widely and do as much harm as its creator had
apparently hoped for.
 At this stage, after the first exploitation, the existence of the vulnerability was
common knowledge in the IT community, a patch to fix it had been made available, and
the first CodeRed attack, at the very least, alerted the IT community to the exploitability
of the vulnerability and the harm it could cause. The IT community was also aware of the
programming flaw in CodeRed that limited its effectiveness, and that the flaw could
easily be fixed. The damage that a debugged version of CodeRed could do with the
assistance of the Windows IIS vulnerability was therefore foreseeable.
 A second, more virulent version of CodeRed appeared on July 19, 2001. The
programming flaw that plagued its predecessor was fixed in this version, and the second
version, predictably, caused substantially more harm than its predecessor.
 An IT manager who failed to implement a security patch to fix the Windows IIS
vulnerability, after the first CodeRed attack, may be held liable for negligently
encouraging free radicals who subsequently exploited the flaw in his system to cause
harm to other users. A breach of duty analysis would begin by considering an untaken
precaution that would have avoided the second CodeRed infection. The most logical and
probably most effective precaution would be implementation of the security patch
provided by Microsoft. The Code Red worms could, for instance, not infect a system that
had the Microsoft MS01-033 patch installed.130 A commentator opined, "[t]here was so
much publicity and so many published articles by the time Code Red II hit, that any
competent server manager would have had ample opportunity to patch their systems in
time."131

 The plaintiff would be required to show that implementing the patch would have
yielded greater benefits in accident reduction than its cost. The benefits would include
avoidance of the foreseeable harm from further exploitation of the vulnerability. After the

128 R. Lemos, Microsoft reveals Web Server Hole.
Available at: http://news.com/2100-1001-268608.html.

129 eEye Digital Security Advisory. Available at:
http://www.eeye.com/html/Research/Advisories/AL20010804.html.

130 Jeremy D. Baca, Windows Remote Buffer Overflow Vulnerability and the Code Red Worm. SANS
Institute White Paper (September 10, 2001).

131 Id., at 6.

appearance of the first version of CodeRed, a reasonably competent IT professional knew
or should have been able to infer the potential harm from further and more efficient
exploitation of the vulnerability.
 The expected harm avoided must be weighed against the cost of implementing the
patch. Although security patches are usually made available for free to users,
implementing them may be costly and difficult, especially in large corporations with
complex systems. Patches also tend to intereact with and affect the systems to which they
are applied, sometimes impairing their performance.132

 Although a conclusive resolution of the cost-benefit tradeoff would require a
detailed numerical analysis of the costs and benefits involved, it appears that the
defendant in this hypothetical was likely negligent in failing to implement the security
patch. Implementing the security patch and dealing with and fixing bugs introduced by
interaction between the patch and the regular system appear minor compared to fixing the
harm from an attack by a blended threat, such as CodeRed and its potential successors.

Other EFR factors

In addition to the negligence requirement, the following factors influence courts in
holding a defendant liable for damage caused by encouraging free radicals.133

1. The defendant's encouragement of the free radical was substantial.
2. The defendant created a scarce opportunity for the free radical.
3. The free radical's behaviour was foreseeable.
4. The free radical harmed a third party, as opposed to himself.
5. The foreseeable harm was serious.
6. The fact that the defendant's encouraging behaviour was deliberate, as opposed to
inadvertent, was considered important in some cases.
7. The defendant had a special relationship with the free radical, the victim, or both.

A. Substantial encouragement

132 Peter Szor, THE ART OF COMPUTER VIRUS RESEARCH AND DEFENSE (Symantec Press, 2005), at
367, 410.

133 Mark F. Grady, The Free Radicals of Tort, at 119.

The defendant's encouragement of the free radical must have been substantial for liability
to be imposed. Courts have interpreted "substantial encouragement" in terms of the
likelihood of provoking harmful behavior by free radicals.
 Contrast, for instance, Segerman v Jones134 with Home Office v Dorset Yacht
Co.135 In Dorset, seven boys who had been sentenced to working in a boot camp for
juvenile offenders were working under supervision of three Home Office guards. One
evening, in breach of their instructions to watch the boys, the guards simply went to bed,
leaving the boys unsupervised. The boys swam out to an unattended yacht moored nearby
and managed to set it in motion. They collided with another yacht owned by the
plaintiffs, who sued the Home Office for the resulting damage. The trial court ruled in
favor of the plaintiff, and the Court of Appeal affirmed.
 Lord Reid stated that the Home Office would be liable if it appearedvery likely, ex
ante, that the boys would damage property if they were to escape from supervision. It is
plausible to assume a high foreseeable likelihood of escape and harmful behavior by the
delinquents. The boys were juvenile offenders, with records including convictions for
breaking and entering, larcency and grand theft auto. Given, in addition, that five of the
seven had a record of previous escapes from boot camp, the inference of substantial
encouragement appears justified.
 In Segerman, the defendant teacher left her classroom for a few minutes. During
her brief absence, one student kicked out the teeth of one of his classmates. The
Maryland Supreme Court held that the teacher was not liable. The extent of her
encouragement of the children was leaving them to their own devices for a few minutes.
This encouragement was too slight to impose liability. The free radicals in this case were
ordinary school children, obviously not in the league of the juvenile offenders of Dorset.
 Similar cases have denied liability for leaving a stake at a construction site,136 for
leaving a screwdriver out in a yard,137 and leaving a load of dirt clods out in a
backyard.138 In these cases, the court apparently considered the likelihood of harm from
the opportunity to be insignificant, and the encouragement therefore insubstantial.

134 259 A.2d 794 (Md. 1970).

135 [1970] 2 A.C. 1004 (appeal taken from Eng.)

136 Cole v Housing Authority, 385 N.E.2d 382 (Ill. 1979).

137 Dennis ex rel. Evans v Timmons, 313 S.C. 338, 437 S.E.2d 138 (1993).

138 Donehue v Duvall, 243 N.E.2d 222 (Ill. 1969). The defendants had hauled loads of dirt into their
backyard. Children from the neighborhood frequented the pile and threw clods of dirt at each other, and the

 In a blended attack, the original tortfeasor typically encourages free radical cyber
rogues by making a tempting and exploitable security vulnerability available. Does a
network security vulnerability constitute substantial encouragement to cyber rogues? The
metric of the substantiality of a security vulnerability, such as a buffer overflow, is the
likelihood that the vulnerability, when created, would be found and exploited to
perpetrate a cyber attack. We argue that buffer overflows are likely to be discovered
rapidly when they become available, and, once identified, promptly exploited. This
conclusion is supported by empirical evidence.
 It is unlikely that a valuable and exploitable computer security vulnerability, such
as a buffer overflow, will remain undiscovered for long. Worms and viruses employed in
blended threats are programmed to automatically search for and locate exploitable
vulnerabilities. Furthermore, technologies are available to assist software designers in
identifying security vulnerabilities in their products.139 Although such vulnerability
identififying technologies are intended to assist designers of "legitimate" software in
troubleshooting and debugging, the technologies are, of course, equally available to
designers of malevolent code.
 Once an appropriate vulnerability is identified, it will likely be exploited. In his
recent treatise on buffer overflow attacks, James Foster comments, "[i]t's no coincidence
that once a good exploit is identified, a worm is created. Given today's security
community, there's a high likelihood that an Internet worm will start proliferating
immediately. Microsoft's LSASS vulnerability turned into one of the Internet's most
deadly, costly and quickly proliferating network-based automated threats in history.
Multiple variants were created and released within days."140 In fact, current trends and
patterns of infection suggest that the time lag between discovery of a vulnerability and its
exploitation is shrinking.141

defendants knew about this. One of the children threw a dirt clod at the five-year old defendant, and
injured his eye. The trial court dismissed the complaint, and the Illinois Supreme Court affirmed.

139 See, e.g., James C. Foster et al., BUFFER OVERFLOW ATTACKS (2005), at 424 [Describing the
CodeAssure Vulnerability Knowledgebase troubleshooting system, which is capable of reliably identifying
flaws such as buffer and integer overflows in software.] See, also, Joel McNamara, Secrets of Computer
Espionage: Tactics and Countermeasures (2003), at 235 [Discussing commercial, sometimes free, scanners,
that can be used to probe a system for vulnerabilities.]

140 James C. Foster et al., BUFFER OVERFLOW ATTACKS (2005), at 8.

141 See, e.g., Chen & Robert, The Evolution of Viruses and Worms, at 13 ["Blaster suggests a trend that the
time between discovery of a vulnerability and the appearance of a worm to exploit it is shrinking (to one
month in the case of Blaster.)"]

 Factors that contribute to the prompt exploitation of buffer overflow
vulnerabilities include their ease of exploitation and their convenient properties that give
cyber rogues exactly what they need. These properties include a buffer overflow's
convenient configuration as a gateway to inject and execute attack code, and assume
unauthenticated remote control of a system or network, including root control.142
 A vulnerability may be considered easy to exploit if no special programming
skills are necessary to take advantage of it, or if the necessary exploit code is publicly
available.143 Writing a successful buffer overflow exploit takes considerable
programming skill, but buffer overflow exploit code is often publicly available and
accessible, even to individuals without technical sophistication. As new buffer overflow
vulnerabilities are discovered, exploits are habitually published shortly after the
discovery.144 Technical articles continuously appear, describing vulnerabilities and how
to exploit them, often in substantial detail.145
 Multiple buffer overflow vulnerabilities have been reported in advisories that
were either trivial to exploit or for which exploit code was publicly available. A
vulnerability in the Solaris KCMS Library Service System, for instance, was easy to
exploit. Exploitation of this vulnerability could be accomplished by drawing on a
standard and widely available software tool and basic computer literacy.146
 A buffer overflow vulnerability in a version of the commercial program
Hypermail was, likewise, easily exploitable.147 Hypermail is an open-source program that
converts e-mail messages into cross-linked HTML pages. The program contained a

142 Cowan et al., at 1 ("Buffer overflow vulnerabilities particularly dominate in the class of remote
penetration attacks because a buffer overflow vulnerability presents the attacker with exactly what they
need: The ability to inject and execute attack code. The injected code runs with the privileges of the
vulnerable program, and allows the attacker to bootstrap whatever other functionality is needed to control
("own") the host computer.")

143 Symantec Internet Security Threat Report, Volume III, February 2003, at 47.

144 For a review of publicly available exploits, see Takanen et al., Running Malicious Code By Buffer
Overflows: A Survey of Publicly Available Exploits. EICAR 2000 Best Paper Proceedings.
http://www.papers.weburb.dk.

145 See, e.g., Smith, N.P., Stack Smashing Vulnerabilities in the UNIX Operating System. Southern
Connecticut State University (1997). Available at http://destroy.net/machines/security/ (Thorough
academic survey, covering history and terminology, various vulnerabilities and related technologies, as
well as solutions).; Litchfield, D., Exploiting Windows NT 4 Buffer Overruns (1999).
Available at: http://wwwinfowar.co.uk/mnemonix/ntbufferoverruns.htm.

146 SUN Advisory: http://sunsolve.sun.com/pub-cgi/retrieve.pl?doc=fsalert/50104.

147 Vulnerability advisory: http://archives.neohapsis.com/archives/vulnwatch/2003-q1/0042.html.

vulnerability that could be exploited simply by sending malicious e-mail with an over-
long attachment name. A detailed sample e-mail message that would trigger the overflow
and control Hypermail's execution had been posted on the Internet.148

 Not all buffer overflow vulnerabilities are easy to exploit. A recent advisory
describes, for instance, the SpamAssassin buffer overflow as "challenging to exploit,"
depending on the target computing environment. This particular vulnerability is not
exploitable on all platforms. To succeed, a would-be attacker would have to identify and
target victims who are using a vulnerable spam filter.149

 In summary, a security vulnerability such as a buffer overflow, likely constitutes
substantial encouragement to perpetrators of cyber crimes such as blended attacks. A
valuable and easily exploitable vulnerability, such as the buffer overflow, is likely to be
promptly discovered and exploited. The discovery of vulnerabilities is facilitated by
technology: Viruses used in blended attacks are often programmed to search for new
vulnerabilities, and specialty software designed to identify security weaknesses in
computer systems and networks is freely available. Attackers have a strong incentive to
find and exploit vulnerabilities such as buffer overflows, because buffer overflows are
easy to exploit and give attackers exactly what they need to launch a blended attack.
Empirically, exploitation of buffer overflows is pervasive, both in an absolute sense, as
well as measured as a percentage of all blended attacks.150
 A buffer overflow vulnerability as substantial encouragement of free radical cyber
rogues is therefore closer to Dorset (encouragement likely to incite free radical juvenile
delinquents) than Segerman (encouragement insufficient to incite normal school
children).

B. Scarce opportunity for wrongdoing

Courts are more likely to impose liability when the defendant has created a tempting
opportunity that does not normally exist for the free radical. If a free radical already has

148 http://packetstormsecurity.org/filedesc/hypermail.html.

149 The SpamAssassin spamc daemon contains a buffer overflow vulnerability when running in Batched
SMTP (BSMTP) mode. It is described in SANS Critical Vulnerability Analysis Vol 2 No 04. See, also,
Peter Szor, THE ART OF COMPUTER VIRUS RESEARCH AND DEFENSE (Symantec Press, 2005), at 402
(Describing the OpenSSL buffer overflow vulnerability as challenging to exploit.); Id, at 547 ("Some
vulnerabilities are easily exploited by the attackers, while others take months to develop.")

150 For statistics and a discussion of the pervasiveness of bufer overflow exploitation, see, infra, subsection
C ("Predictable free radical behavior.")

several opportunities available for harmful behavior, the defendant's encouragement does
not amount to a scarce opportunity.
 A person flashing a wad of $100 bills, for instance, would probably not be liable
for the harm caused by a fleeing thief who runs into and injures someone. Because of the
availability to the thief of many other similar opportunities, the flash of money was not
an unusually tempting opportunity to the free radical. If the person had not flashed the
money, a determined thief would have found another equally attractive opportunity.151
 In Stansbie v Troman,152 the defendant, an interior decorator, neglected to lock
the door of the house of a client. A burglar entered through the open door and stole the
plaintiff's jewelery. The court held the defendant liable for the loss. The defendant had
created an opportunity for the thief that does not normally exist - valuables are normally
kept under lock and key.
 In a similar case, the defendant put a scaffold in place next to the plaintiff's
apartment building. Armed robbers used the scaffold to gain entry to the plaintiff's
apartment and stole his goods. The New York Supreme Court denied the defendant's
petition for summary judgment. The defendant had encouraged free radicals by making a
scarce and tempting opportunity available to them.153
 In a contrasting case, the defendant sold free radicals five gallons of gasoline into
an open pail, in violation of a municipal ordinance which prohibited sales of gasoline in
open containers and in excess of two gallons. The free radicals subsequently used the
gasoline to commit arson. The defendant was held not liable. Providing the gasoline to
the free radicals did not constitute a rare opportunity, as they could have siphoned the
gasoline they needed from a car.154

 The pattern of case law suggests that a scarce opportunity is one that (i) is not part
of the free radical's normal opportunity set, and (ii) is more tempting than existing
opportunities, perhaps because it lowers the transactions cost of the free radical's harmful
behavior. A thief can always use brute force to break into an apartment to do his
business. However, an unlocked door or conveniently placed scaffold would be an

151 Mark F. Grady, Proximate Cause Decoded, 50 UCLA L. REV. 293, 310 (2002) ("The defendant, in
order to be liable, must negligently provide some special encouragement of wrongdoing that does not exist
in the normal background of incitements and opportunities.")

152 [1948] 2 K.B. 48.

153 Russo v Grace Institute, 546 N.Y.S.2d 509 (Sup. Ct. 1989).

154 Gonsalez v Derrington, 363 P.2d 1 ((Cal. 1961).

unusual opportunity to lower his transactions cost: Less physical exertion, faster results,
less likely to attract attention than a more forceful entry. The unlocked door and scaffold
therefore fit the common law profile of a scarce opportunity. Selling gasoline to a free
radical in an open pail, on the other hand, does not constitute a scarce opportunity. The
alternative, siphoning the gasoline from a car, is not significantly more burdensome or
costly.
 Computer security vulnerabilities appear to be scarce opportunities. A buffer
overflow vulnerability is analogous to the unlocked door in Stansbie. The unlocked door
provides the convenient access normally reserved for someone with valid authentication,
such as possession of a key. Similarly, a buffer overflow yields remote, unauthenticated
and root access to a target computer system, as well as the opportunity to inject malicious
code into the system. This kind of privileged access is normally reserved for the system
administrator.155
 The unlocked door also lowers the transactions costs of the intruder. Analogously,
security vulnerabilities lower the cyber attacker's transactions cost by making attacks
faster and more efficient, remotely executable, and the attack less likely to be blocked.
Skilful exploitation of security vulnerabilities allow attackers to achieve more
destruction, in less time and with lower computational expenditure.156 Fast-spreading
worms, such as Nimda, are also less likely to be blocked before their task is
accomplished. The combination of security exploits with computer viruses enable
complex attacks that are difficult to detect with conventional antivirus software.157
 Security vulnerabilities conform to the common law pattern of scarce
opportunities in free radical cases. They present opportunities not available in the normal
functionality of computers and, analogously to an unlocked door or scaffold, offer

155 See section xxx.

156 Vulnerability exploits allow malevolent code to operate with greater speed and efficiency. Nimda
relied, for instance, on an input validation exploit known as MIME header parsing, as well as auto-
execution capability to spread rapidly. See, e.g., Peter Szor, THE ART OF COMPUTER VIRUS RESEARCH
AND DEFENSE, at 415 ("The ability to infect IIS Web servers via an input validation exploit and
autoexecute upon users' reading or previewing e-mail played a large role in Nimda's ability to spread so
rapidly.")

157 Peter Szor, THE ART OF COMPUTER VIRUS RESEARCH AND DEFENSE (Symantec Press, 2005), at
366 ("Security exploits, commonly used by malicious hackers, are being combined with computer viruses,
resulting in very complex attacks that sometimes go beyond the general scope of antivirus software."), and
Id, at 542 ("[H]ighly infectious worms [such as CodeRed and Slammer] jump ... over the Internet using
buffer overflow attacks on networked services. Because the files need not be created on disk and the code
is injected into the address space of the vulnerable processes, even file integrity systems remain challenged
by this particular type of attack.")

privileged access and convenience to an attacker. Security vulnerabilities also lower the
transactions costs of a cyber vandal: Greater potential harm, in less time, and with lower
likelihood of timely detection. The opportunities presented by a buffer overflow therefore
appear to be closer to Russo (scaffold) or Stansbie (unlocked door), than Derrington (pail
of gasoline).

C. Predictable free radical behavior

Foreseeability is a touchstone of proximate cause. A crisp formulation of the proximate
cause requirement is that the realized harm must be within the scope of risk foreseeably
created by the defendant, and the plaintiff must belong to the class of persons foreseeably
put at risk by the defendant's conduct.158
 Consistently with the spirit of proximate cause, the behavior of free radicals must
be foreseeable, or predictable, to hold their encouragers liable. If a radio station organizes
a contest that encourages teenagers to race to catch up with a roving disk jockey, and
they in fact race and cause an accident, the organizers of the contest will likely be held
liable.159 If the free radical goes too far or otherwise acts in an unpredictable manner, the
defendant will escape liability. If one of the contestants had shot the other, for instance,
the radio station would not be held liable.
 In Bansadine v Bodell,160 the defendant provoked a driver known for his
aggression. The provoked driver shot the plaintiff's deceased. In spite of the driver's
known aggressive tendencies, the defendant was found not liable. The court stressed that
the defendant could not foresee that a driver would fire a gun at him for shining his high
beams on the driver. The free radical driver's reaction, even for a person known for his
fiery temperament, went beyond the encouragement of the defendant.
 The exploitation by cyber attackers of vulnerabilities, such as the buffer overflow,
is foreseeable. We have argued in subsection A ("Substantial encouragement") that buffer
overflows are likely to be discovered rapidly when they become available, and, once
identified, promptly exploited.

158 Dan B. Dobbs, THE LAW OF TORTS, at 444. See, also, Judge Learned Hand in Sinram v Pennsylvania
RR. Co., 61 F.2d 767, 771 (2d Cir. 1932) ("[T]he usual test is ... whether the damage could be foreseen by
the actor when he acted; not indeed the precise train of events, but similar damage to the same class of
persons.")

159 Weirum v RKO General, Inc, 539 P.2d 36 (Cal. 1975).

160 927 P.2d 675 (Utah App. 1996).

 Foreseeability of exploitation of buffer overflows is confirmed by the empirical
pervasiveness of such exploits, and the IT community's awareness of it. Buffer overflows
are currently, and have been for a decade or so, the most commonly exploited security
vulnerability and the most common way for an attacker outside of a target system to gain
unauthorized access to the target system.161 If buffer overflows were eliminated, the
incidence of security breaches would be drastically reduced.162 The computer security
community is indeed aware of the exploitability of and hazards associated with buffer
overflows. James Foster opines, "[b]uffer overflow vulnerabilities are the most feared of
vulnerabilities from a software vendor's perspective. They commonly lead to internet
worms, automated tools to assist in exploitation, and intrusion attempts."163

 Statistics reported in security advisories confirm the dominance of the buffer
overflow as exploit of choice. A third of investigating advisories spanning September
2002 through March 2004 were related to buffer overflows (224 out of 659).164 In the
year 2003, alone, approximately 75 percent of all CERT advisories were related to buffer

161 Rupert Goodwins, Playing Silly Buffers: How Bad Programming Lets Viruses In, ZDNet White Paper
(January 2004). ("The buffer overflow is the mechanism of choice for the discerning malware merchant.
New hardware and software techniques are reducing the incidence of this perennial problem, but it's
unlikely ever to go away completely.")
Available at http://insight.zdnet.co.uk/internet/security/0.39020457.39119117.00.htm.
See, also, Crispin Cowan et al., Buffer Overflows: Attacks and Defenses for the Vulnerability of the
Decade, Working Paper, Dept. of Computer Science and Engineering, Oregon Graduate Institute of
Science & Technology. (Describing buffer overflows as not the "most common form of security
vulnerability" over the last decade, but also the dominant penetration mechanism for anonymous Internet
users to gain remote control of a computer or network. ... Because buffer overflow attacks enable anyone to
take total control of a host, they represent one of the most serious classes of security threats.")
Available at: http://www.cse.ogi.edu/DISC/projects/immunix.

162 Crispin Cowan et al., Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade,
Working Paper, Dept. of Computer Science and Engineering, Oregon Graduate Institute of Science &
Technology. http://www.cse.ogi.edu/DISC/projects/immunix. ("If the buffer overflow vulnerability could
be effectively eliminated, a very large portion of the most serious security threats would also be
eliminated.")

163 James C. Foster et al., Buffer Overflow Attacks (2005), at 20. See, also, Peter Szor, THE ART OF
COMPUTER VIRUS RESEARCH AND DEFENSE (Symantec Press, 2005), at 538 ["Every month critical
vulnerabilities are reported in a wide variety of operating systems and applications. Similarly, the number
of computer worms that exploit system vulnerabilities is growing at an alarming rate."]

164 See, also, Mark E. Donaldson, Inside the Buffer Overflow Attack: Mechanism, Method, & Prevention
(April 2002). SANS White Paper ["Despite its lengthy history and simple preventitive methods, the buffer
overflow continues to be a significant and prominent computer security concern even today. For example,
buffer overflow problems are implicated in five of the SANS Top 20 vulnerabilities. The SuSE Linux
website lists 22 buffer overflow vulnerabilities that require patching. Of the 44 CERT advisories published
between 1997 and 1999, 24 were related to buffer overflow issues."]

overflows.165 A Symantec security bulletin reported that blended attacks accounted for
60 percent of malicious code submissions during the first half of 2003, most employing a
buffer overflow.166 Other advisories and security reports exhibit a similar pattern.167
 Serious buffer overflow problems are not limited to small and resource-deprived
companies, but have also plagued the products of large and well-known software
vendors. Advisories of companies such as Apple and Oracle were nearly all related to
buffer overflows, while half the advisories of Cisco, Microsoft and Sun were related to
overflows.168
 Exploitation of buffer overflow vulnerabilities is foreseeable, because it is well
known that new vulnerabilities are likely to be discovered, exploited when discovered,
and that actual exploitation is in fact pervasive.

D. Third parties threatened

The courts do not usually allow free radicals to recover for injuries they have caused to
themselves. The courts only hold encouragers liable when free radicals injure third
parties.
 In Gilmore v Shell Oil Co.,169 the defendant's employee left a loaded gun within
easy reach of a teenager. The teenager took the gun and shot and killed himself. Although
the teenager had shot himself intentionally, it was clear from the circumstances of the
case that, but for his ready access to the gun, he would not have done so. The trial court

165 CERT Advisories, available at http://www.cert.org/advisories/. See, also, Mark Shaneck, An Overview
of Buffer Overflow Vulnerabilities and Internet Worms, CSCI, December 2003, 1. Available at http://www-
users.cs.umn.edu/~shaneck/MarkShaneck_BufferOverflows.pdf.

166 John Leyden, Worms Spread Faster, Blended Threats Grow. The Register, 1 October 2003.
http://www.theregister.co.uk/2003/10/01/worms_spread_faster_blended_threats/

167 Among five attacks used in the 1998 Lincoln Labs intrusion detection evaluation, three were essentially
social engineering attacks that snooped user credentials, and two were buffer overflows. Out of 13 CERT
advisories from 1998, 9 involved buffer overflows. A least half of 1999 CERT advisories involved buffer
overflows. See, e.g., Fred B. Schneider et al., TRUST IN CYBERSPACE. National Academy Press, 1999;
Steve Bellovin, Buffer Overflows and Remote Root Exploits. Personal communication, cited in Crispin
Cowan et al. (supra), ref. [5]. According to the (informal) Bugtraq security vulnerability survey,
approximately two thirds of respondents felt that buffer overflows are the leading cause of security
vulnerability. Schneider at al., Trust in Cyberspace (National Academy Press, 1999); Bugtraq mailing list:
http://geek-girl.com/bugtraq/.

168 Edmund X. DeJesus, Drowning in Buffer Overflow Vulnerabilities, SECURITY WIRE PERSPECTIVES
(24 May 2004).

169 613 So. 2d 1272 (Ala. 1993).

nevertheless entered summary judgment for the defendant, and the Alabama Supreme
Court affirmed. Deterrence of this type of behavior is outside the policy objectives of tort
law. The case may have been decided differently if the deceased had been a young child,
as the EFR doctrine protects children against themselves.170

E. Serious harm

Courts are more likely to hold a defendant liable if the foreseeably encouraged harm is
serious. Someone who has left explosives around children,171 for instance, is more likely
to face liability than someone who has left a pile of dirt clods,172 and someone who fails
to supervise juvenile delinquents is more likely to face liability than a school teacher who
leaves ordinary school children momentarily to their own devices.173

 The severity of a computer security breach resulting from a system vulnerability
is a function of the following factors.
A. The degree of control over the affected system or network given to an exploiter of the
vulnerability. The degree of control afforded by the vulnerability depends on (i) the level
of access it confers, (ii) the degree of remote exploitability it allows; (iii) its ease of
exploitation; and (iv) the degree to which it enables circumnavigation of authentication
requirements.174

B. Once the attacker has gained control, the kind and degree of harm such control allows
the attacker to unleash.

Degree of control given by buffer overflow

Access. The ultimate gift to a cyber attacker would be the most privileged level of access,
namely full root-level access to the target system. "Root" is the conventional name of the
superuser who has all rights in all modes on the computer system. This is usually the
system administrator's account. The superuser has privileges that an ordinary user does

170 Mark F. Grady, The Free Radicals of Tort, at 127.

171 Travell v Bannerman, 75 N.Y.S. 866 (App. Div. 1902).

172 Donehue v Duvall, 243 N.E.2d 222 (Ill. 1969).

173 Segerman v Jones, 259 A.2d 794 (Md. 1970).

174 Symantec Internet Security Threat Report, at 47.

not have, such as authority to change the ownership of files, install and run programs,
change Web Server databases, add, change, or delete system files or data, and change or
replace web pages.175 An attacker who gains system-level access inherits these
privileges. Hence, if a program is already running with root privileges, a buffer overflow
could hijack the program and transfer root control to the attacker.176 The attacker would
then effectively become the administrator of the system. Exploitation of buffer overflows
commonly yield root access to the attacker. The Linux application, DosEMU, for
instance, had a buffer overflow vulnerability that assisted an attacker in gaining root
access.177

 Remote exploitability. A vulnerability allows remote exploitability when it
enables a user to access and execute commands on a remote system, as if the user were
connected to a direct terminal on the system. Buffer overflow vulnerabilities are the
perfect springboard to gain remote access to a target system, because it allows an attacker
to inject malevolent code, such as an e-mail worm, directly into the execution path of the
remote system.178 The viral code could then create further opportunities for other remote
attackers. The Nimda worm, for instance, attacked via backdoors left by worms such as
CodeRed.179
 Remote exploitation of buffer overflows has recently been reported in well known
products, such as Sendmail, various Microsoft products, and, ironically, PGP.180 A

175 Root (computing), at http://en.wikipedia.org/wiki/Root_access.

176 Dorothy E. Denning, INFORMATION WARFARE AND SECURITY (1999), 214 (Referring to malcicious
code executed via a buffer overflow as executing "with the privileges of the program it exploits, which is
often root."

177 See, e.g., Securiteam advisory, DosEMU Buffer Overflow Assists in Gaining Root, at
http://www.securiteam.com/exploits/2GUPVSAQO0.html.

178 Peter Szor, THE ART OF COMPUTER VIRUS RESEARCH AND DEFENSE (Symantec Press, 2005), at
368.

179 Nimda's other attack vectors were infection of Microsoft IIS web servers via a buffer overflow exploit;
infection of network shares; and infection via Javascript added to web pages. See, e.g., Thomas Chen,
Trends in Viruses and Worms, presentation at SMU Dept. of EE. Other attack points frequently used in
blended attacks include injecting malicious code into .exe files on a target system, creating world readable
network shares, making multiple registry changes, and adding script code to html files.

180 See, e.g., Symantec Security Response (3-3-2003) ("A remotely exploitable vulnerability has been
discovered in Sendmail. This vulnerability is due to a buffer overflow condition in the SMTP headrer
parsing component. Remote attackers may exploit this vulnerability by connecting to target SMTP servers
and transmitting them malformed data.")
http://securityresponse.symantec.com/avcenter/security/Content/3.3.2003.html.
See, also, Technical Cyber Security Alert TA04-260A, United States Computer Emergency Readiness Team
(13 February 2005) (Describing a vulnerability in Microsoft's Graphic Device Intrface Plus, which may

vulnerability in Microsoft's Internet Explorer browser, for instance, allowed a properly
formatted HTML document to cause a buffer overflow. This flaw could be exploited to
allow an attacker to execute arbitrary code on the affected system, including malicious
code, with the privileges of the user running Internet Explorer. The vulnerability was
remotely exploitable.181
 Ease of exploitation. As discussed in subsection A ("Substantial
encouragement"), a vulnerability is easily exploited if a would-be attacker does not need
technical sophistication or a complex exploit to use it, or if a suitable exploit is publicly
available. We have argued that although not all buffer overflow vulnerabilities are
necessarily easy to exploit, many are, and even for difficult to exploit vulnerabilities,
exploits are frequently publicly available soon after the vulnerability is discovered.182
 Authentication requirements. The term "authentication" refers to the procedures
by which a computer system verfies the identity of a party from whom it has received a
communication. The login procedure is probably the best-known example of an
authentication procedure. A login prompt asks the user to identify herself, followed by a
request for a password. The system then authenticates the stated identity of the user by
validating the password, if the password and identity match. If they do not match, the
user is restricted from accessing the system. Other examples of authentication include the
requirement of confirmation e-mail to activate an on-line account, ATM access,

allow remote executability of malicious code on an affected system, by reading an HTML-rendered e-mail
message or opening a crafted JPEG image. The attacker may execute their own code on the affected system
with privileges of the user running the software component being attacked.)
http://www.us_cert.gov/cas/techalerts/TA04-260A.html.
See, also, Foundstone Labs Advisory - 090502-PCRO (advisory on remotely exploitable buffer overflow
vulnerability in PGP.) http://www.foundstone.com/advisories.;
DosEMU Buffer Overflow Assists in Gaining Root (Describing a buffer overflow vulnerability in a Linux
application that enables root access to a malicious attacker.) Available at:
http://www.securiteam.com/exploits/2GUPVSAQ0O.html.
Samba Buffer Overflow, IntruShield Security Advisory SA20 (Describing buffer overflow vulnerability in
the Samba server, a widely used, open-source UNIX compatible server. Advising that vulnerability allows
remote attackers to gain root access.) Available at:
http://www.networkassociates.com/us/security/resources/sv_20.htm.

Software vendors, notably Microsoft, typically issue a patch to fix a vulnerability as soon as it is
discovered. Users are not always diligent in implementing the patch, hence the continuing exploitability of
some vulnerabilities even after corrective action by the vendor.

181 Buffer Overflow in Microsoft Internet Explorer, Computing Services Security Information, UC Davis
Computing Services (2004-11-10). This document also advises on other remotely exploitable
vulnerabilities in Microsoft Internet Explorer.
Available at http://www.ucd.ie/computing/support/security.html.

182 See, supra, subsection A ("Substantial encouragement.")

cryptographic authentication of a digitally signed contract, and biometric identification in
applications such as Internet banking.
 Authentication provides a line of defense against unauthorized access to a
resttricted system. A vulnerability that allows unauthenticated access may allow an
attacker to bypass this line of defense. Network vulnerabilities, including buffer
overflows, allow unauthenticated remote access to attackers without authentication.183
 A remotely exploitable buffer overflow in Microsoft Data Access Components
(MDAC), a system that provides database access for Windows platforms, was recently
reported. The vulnerability enabled an attacker to run unauthenticated arbitrary code on
an affected system.184 The unauthenticated arbitrary code could, of course, be
malicious.185

 A vulnerability in Fusion News, a news management program for web servers,
allowed remote unauthenticated attackers to create arbitrary user accounts on the Fusion
News server by sending a specially crafted request to the server. If properly structured,
the request could also be used to gain administrative access. Exploitation of this
vulnerability was trivial. A ready-to-use sample server request was, for instance,
available on the Internet.186 This vulnerability contained all the critical elements

183 See, e.g., How Safe Is Your Firewall? Microsoft NetDDE Service Unauthenticated Remote Buffer
Overflow (MS04-031) (23 Jan 2005). Securiteam Advisory. (Reporting a vulnerability in the Microsoft
DDE service that allows a remote attacker to execute arbitrary code on a system without authentication.)
Available at: http://www.ngssoftware.com/advisories/netddefull.txt. Microsoft has released an update
addressing the vulnerability: http://www.microsoft.com/technet/security/bulletin/MS04-031.mspx. See,
also, Dorothy E. Denning, INFORMATION WARFARE AND SECURITY (1999), 214 (Hackers execute
malcicious code remotely, "without logging in through an account or password," by exploiting buffer
overflow vulnerabilities.)

184 The vulnerability offered several opportunities to an attacker, including exploiting clients via a
malicious web server. If a user were to browse an infected web site, the server would invoke a new session,
and then, unbeknownst to the user, bring the user back to the web site but via the new session. At this point
a buffer overflow within Internet Explorer would allow the server to run unauthenticated arbitrary code on
the client system. Remotely Exploitable Buffer Overflow in Microsoft MDAC. Available at: http://security-
protocols.com/modules.php?name=News&file=article&sid=1391.

185 Remotely Exploitable Buffer Overflow in Microsoft MDAC. Available at: http://security-
protocols.com/modules.php?name=News&file=article&sid=1391.
See, also, Buffer Overflow in System V Derived Logic, Symantec Security Response (14 December 2001)
(Reporting vulnerability that allows root access to systems with programs that use a vulnerable login for
authentication.)
Available at: http://securityresponse.symantec.com/avcenter/security/Content/2001.12.14b.html.

186 Posting by DarkKnight: http://archives.neohapsis.com/archives/bugtraq/2003-08/0201.html. See, also,
Peter Szor, THE ART OF COMPUTER VIRUS RESEARCH AND DEFENSE (Symantec Press, 2005), at 410.

favorable to a cyber attacker: no authentication barriers, system administration-level
(root) access, ease of exploitation, and allowing execution of malicious code.

Economic impact

The ultimate measure of the severity of a cyber attack is its economic impact. By this
measure, blended threats, aided by buffer overflow vulnerabilities, are capable of
considerable harm. The CodeRed family of blended attacks, although not the first of its
kind, woke us up to the risks of remotely launched buffer overflow attacks.187 The first
CodeRed worm caused billions of dollars of damage in just a few days, despite corporate
firewalls and other defensive efforts. Worldwide harm caused by Code Red is estimated
at $2.62 billion.188 Subsequent blended attacks, such as Nimda, continued the trend.
According to an estimate by consulting firm, Computer Economics, Nimda infected more
than 2.2 million servers and PCs in a 24-hour period during September 2001, causing
damage of more than $590 million worldwide.189 A study by computer and
communications consulting firm, Aberdeen Group, reports that annual productivity loss
due to viruses and blended threats averages more than $200 per employee in the financial
industry.190 Buffer overflow vulnerabilities are well represented in the SANS top 20 list
of CERT security vulnerabilities,191 and is ranked fifth in the Top Ten Vulnerabilities by
Orthus Information Security Solutions.192
 In conclusion, security vulnerabilities, especially the buffer overflow, present
opportunities to free radicals to do serious harm. The severity of the harmful behavior
encouraged by a buffer overflow vulnerability is due to (i) the degree and level of control
over the affected system or network it affords an attacker, and (ii) once the attacker has
control, the potential harm such control allows the attacker to unleash. Empirical data

187 See, e.g., http://www.cert.org/advisories/CA-2001-19.html.

188 2002 CSI/FBI Survey, Computer Security Institute.
See, also, http://www.idg.net/english/crd_code_red_665795.html.

189 See, e.g, http://www.idg.net/english/crd_code_red_665795.html.

190 The Financial Value of Symantec's Security Solutions, Aberdeen Group Executive White Paper, March
2003. http://www.aberdeen.com.

191 SANS Top 20 Internet Security Vulnerabilities. http://www.sans.org/top20/ 10/08/2003.

192 Orthus Top Ten Vulnerabilities. http://www.orthus.com/ttvuln.html 2004.

suggest that blended attacks do in fact exploit vulnerabilities to do considerable economic
damage.

F. Deliberate encouragement

Negligence law distinguishes between deliberate and inadvertent failure to use a
reasonable precaution, in EFR cases. A defendant will more likely face liability if he
deliberately encouraged a free radical to do harm, although even inadvertent
encouragement will yield liability when the threatened harm is sufficiently serious and
probable.
 In Mills v Central of Georgia Ry., 193 the defendant had left a signal torpedo on its
tracks. A signal topedo is an explosive device which would blows up upon impact, such
as when hit by an oncoming train. Its purpose was to warn crews working on railroad
tracks of an approaching train. If a torpedo were not detonated, it was supposed to be
picked up and put away. Contrary to this precaution, however, the torpedo in question
was left inadvertently on the tracks. The plaintiff's sons found the torpedo, played with it
and injured themselves when it exploded. The Georgia Supreme Court ultimately found
for the plaintiff. Although the defendant created the opportunity inadvertently, the harm
threatened was sufficiently serious and probable to justify imposing liability.

G. Special relationship

Liability is more likely when the defendant had a special relationship with the victim, the
free radical, or both. This is consistent with general principles of negligence law. A hotel
or common carrier, for instance, has a special duty to guard the best interests of its
customers. An airline would likely be held liable for negligently maintaining a highly
disorganized baggage claim area that leads to injury of a passenger.194

 A defendant who has encouraged free radicals through a nonfeasance as opposed
to a misfeasance will not be liable, unless there was a special relationship. An individual
who has advance knowledge of a cyber attack and who fails to warn an unrelated
plaintiff, will not be liable to the unrelated plaintiff for any harm from the attack.

193 78 S.E. 816 (Ga. 1913).

194 Stagl v Delta Airlines, 52 F.3d 463 (2d Cir. 1995) (per Calabresi, J.)

6. DISCUSSION AND CONCLUSION

Information security threats are diversifying and evolving into multi-threat weapons that
combine a variety of attack technologies and exploitation of security vulnerabilities. The
blended attack exploits synergies between a multi-vector virus or worm and a computer
security vulnerability, such as the buffer overflow, to enhance the effectiveness and
destructiveness of its payload.
 Blended attacks vary in complexity and technology, but they have two elements
in common, namely (i) a multi-vector worm or virus, and (ii) exploitation of a security
vulnerability. Skillful combination of the two elements creates synergies that make such
attacks more hazardous than previous generations of malevolent code. The two salient
elements of a blended attack focus the spotlight on the two most likely defendants in a
civil action involving a blended attack: (i) The original tortfeasor responsible for the
security vulnerability, and (ii) the second tortfeasor responsible for malevolent code that
exploited the vulnerability. The tortfeasors are concurrent efficient causes of the harm of
the victim of a blended attack.
 The direct consequences doctrine of proximate cause examines concurrent
efficient causes to determine whether the second tortfeasor (the virus distributor) has cut
off the liability of the first (the software vendor). An intervening crime or intentional tort,
as is often the case in a cyber attack, normally cuts off the liability of the first tortfeasor.
This is significant, because the second tortfeasor, the exploiter of the vulnerability, is
often judgment-proof or otherwise immune to liability, in contrast to the original
tortfeasor. If liability were fixed exclusively on the second tortfeasor, it would leave the
victim of a blended attack without recourse.
 The Encourage Free Radicals (EFR) paradigm of the direct consequences doctrine
creates an exception if the second tortfeasor is a free radical. It fixes liability on the
primary tortfeasor if she created an opportunity for free radicals to do harm. The policy
objective of the EFR doctrine is to preserve the liability of individuals who are deterred
by the threat of liability, by preventing a solvent defendant from shifting liability to a
judgment-proof individual who is not so deterred.
 The analysis in the article shows that virus authors and distributors who exploit
security vulnerabilities to launch blended attacks have properties commonly associated
with free radicals. An analysis of the technology and mechanism of blended attacks
suggests that the factors that influence courts in holding a defendant liable for
encouraging free radicals are present in a typical blended attack. We conclude that
software designers and commercial vendors who are negligently responsible for security

vulnerabilities in their products would likely be held liable for the harm caused by cyber
rogues who exploit such vulnerabilities. This result is especially significant to plaintiffs
who have suffered harm in a blended attack.

